Close Menu
geekfence.comgeekfence.com
    What's Hot

    Designing trust & safety (T&S) in customer experience management (CXM): why T&S is becoming core to CXM operating model 

    January 24, 2026

    iPhone 18 Series Could Finally Bring Back Touch ID

    January 24, 2026

    The Visual Haystacks Benchmark! – The Berkeley Artificial Intelligence Research Blog

    January 24, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Artificial Intelligence»What’s next for AI in 2026
    Artificial Intelligence

    What’s next for AI in 2026

    AdminBy AdminJanuary 5, 2026No Comments3 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    What’s next for AI in 2026
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Chatbots will change the way we shop

    Imagine a world in which you have a personal shopper at your disposal 24-7—an expert who can instantly recommend a gift for even the trickiest-to-buy-for friend or relative, or trawl the web to draw up a list of the best bookcases available within your tight budget. Better yet, they can analyze a kitchen appliance’s strengths and weaknesses, compare it with its seemingly identical competition, and find you the best deal. Then once you’re happy with their suggestion, they’ll take care of the purchasing and delivery details too.

    But this ultra-knowledgeable shopper isn’t a clued-up human at all—it’s a chatbot. This is no distant prediction, either. Salesforce recently said it anticipates that AI will drive $263 billion in online purchases this holiday season. That’s some 21% of all orders. And experts are betting on AI-enhanced shopping becoming even bigger business within the next few years. By 2030, between $3 trillion and $5 trillion annually will be made from agentic commerce, according to research from the consulting firm McKinsey. 

    Unsurprisingly, AI companies are already heavily invested in making purchasing through their platforms as frictionless as possible. Google’s Gemini app can now tap into the company’s powerful Shopping Graph data set of products and sellers, and can even use its agentic technology to call stores on your behalf. Meanwhile, back in November, OpenAI announced a ChatGPT shopping feature capable of rapidly compiling buyer’s guides, and the company has struck deals with Walmart, Target, and Etsy to allow shoppers to buy products directly within chatbot interactions. 

    Expect plenty more of these kinds of deals to be struck within the next year as consumer time spent chatting with AI keeps on rising, and web traffic from search engines and social media continues to plummet. 

    —Rhiannon Williams

    An LLM will make an important new discovery

    I’m going to hedge here, right out of the gate. It’s no secret that large language models spit out a lot of nonsense. Unless it’s with monkeys-and-typewriters luck, LLMs won’t discover anything by themselves. But LLMs do still have the potential to extend the bounds of human knowledge.

    We got a glimpse of how this could work in May, when Google DeepMind revealed AlphaEvolve, a system that used the firm’s Gemini LLM to come up with new algorithms for solving unsolved problems. The breakthrough was to combine Gemini with an evolutionary algorithm that checked its suggestions, picked the best ones, and fed them back into the LLM to make them even better.

    Google DeepMind used AlphaEvolve to come up with more efficient ways to manage power consumption by data centers and Google’s TPU chips. Those discoveries are significant but not game-changing. Yet. Researchers at Google DeepMind are now pushing their approach to see how far it will go.

    And others have been quick to follow their lead. A week after AlphaEvolve came out, Asankhaya Sharma, an AI engineer in Singapore, shared OpenEvolve, an open-source version of Google DeepMind’s tool. In September, the Japanese firm Sakana AI released a version of the software called SinkaEvolve. And in November, a team of US and Chinese researchers revealed AlphaResearch, which they claim improves on one of AlphaEvolve’s already better-than-human math solutions.



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    The Visual Haystacks Benchmark! – The Berkeley Artificial Intelligence Research Blog

    January 24, 2026

    Windows 365 for Agents: The Cloud PC’s next chapter

    January 23, 2026

    Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News

    January 22, 2026

    The Machine Learning Practitioner’s Guide to Model Deployment with FastAPI

    January 21, 2026

    The breakthrough that makes robot faces feel less creepy

    January 20, 2026

    Balancing cost and performance: Agentic AI development

    January 19, 2026
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 202511 Views

    Hard-braking events as indicators of road segment crash risk

    January 14, 20269 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views
    Don't Miss

    Designing trust & safety (T&S) in customer experience management (CXM): why T&S is becoming core to CXM operating model 

    January 24, 2026

    Customer Experience (CX) now sits at the intersection of Artificial Intelligence (AI)-enabled automation, identity and access journeys, AI-generated content…

    iPhone 18 Series Could Finally Bring Back Touch ID

    January 24, 2026

    The Visual Haystacks Benchmark! – The Berkeley Artificial Intelligence Research Blog

    January 24, 2026

    Data and Analytics Leaders Think They’re AI-Ready. They’re Probably Not. 

    January 24, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Designing trust & safety (T&S) in customer experience management (CXM): why T&S is becoming core to CXM operating model 

    January 24, 2026

    iPhone 18 Series Could Finally Bring Back Touch ID

    January 24, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.