Close Menu
geekfence.comgeekfence.com
    What's Hot

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    ALS stole this musician’s voice. AI let him sing again.

    February 14, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors
    Nanotechnology

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    AdminBy AdminJanuary 23, 2026No Comments2 Mins Read4 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Recent integration of 3D memory technologies such as high-bandwidth memory [HBM] into AI accelerators has enhanced neural network performance. However, the stacked structures of 3D memories result in notable heat accumulation because lateral interfaces obstruct vertical heat dissipation, thereby hindering effective cooling. An effective approach to mitigating energy consumption involves the utilization of nonvolatile memory technologies, such as resistive random-access memory (RRAM). Integration of selector transistors with RRAM devices mitigates sneak path leakage, increases nonlinearity, and improves the reliability of vertically stacked arrays. Nevertheless, executing core AI tasks—such as vector-matrix multiplication in neuromorphic computing—requires substantial current flow through these transistors, which in turn leads to heat generation, reduced power efficiency, and potential computational errors. Additionally, densely stacked layers create hotspots and restrict access to cooling interfaces. This study presents a comparative analysis of models with various selector transistor configurations, based on power parameters from microfabricated 3D RRAM structures. The results indicate that optimally positioning the selector transistor at the memory interface can reduce nanoscale heat accumulation by up to 11%, as verified through finite-element simulations and numerical calculations. Improved thermal management reduced peak local temperatures from over 160 °C to below 60 °C within 20 nanoseconds in configurations featuring 10 to 100 stacked layers.

    Graphical abstract: Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors


    This article is Open Access



    Please wait while we load your content…


    Something went wrong. Try again?



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Issue 86

    February 14, 2026

    What shape is a uranium nucleus? – Physics World

    February 13, 2026

    First Look into the Electrostatic Landscape of a Moiré Unit Cell

    February 12, 2026

    Scientists finally solve a 100-year-old mystery in the air we breathe

    February 11, 2026

    Molecularly imprinted nanoreactors: Bridging enzyme mimicry and synthetic catalysis

    February 9, 2026

    Tandem architectures for electrochemical CO2 reduction: from coupled atomic sites to tandem electrolysers

    February 8, 2026
    Top Posts

    Hard-braking events as indicators of road segment crash risk

    January 14, 202617 Views

    Understanding U-Net Architecture in Deep Learning

    November 25, 202512 Views

    How to integrate a graph database into your RAG pipeline

    February 8, 20268 Views
    Don't Miss

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Summary created by Smart Answers AIIn summary:Tech Advisor highlights six critical errors in Emerald Fennell’s…

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    ALS stole this musician’s voice. AI let him sing again.

    February 14, 2026

    What is Prompt Chaining?

    February 14, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.