Close Menu
geekfence.comgeekfence.com
    What's Hot

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Achieving superior intent extraction through decomposition

    January 25, 2026

    How UX Research Reveals Hidden AI Orchestration Failures

    January 25, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Supramolecular chemical recycling of dynamic polymers
    Nanotechnology

    Supramolecular chemical recycling of dynamic polymers

    AdminBy AdminNovember 5, 2025No Comments6 Mins Read2 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Supramolecular chemical recycling of dynamic polymers
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Zhu, J. B., Watson, E. M., Tang, J. & Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lohmann, V., Jones, G. R., Truong, N. P. & Anastasaki, A. The thermodynamics and kinetics of depolymerization: what makes vinyl monomer regeneration feasible?. Chem. Sci. 15, 832–853 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, B. & Zhang, X. On depolymerization. CCS Chem. 6, 297–312 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S., Du, S., Zhu, J. & Ma, S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization–depolymerization cycle. Chem. Soc. Rev. 53, 9609–9651 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, M. & Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 8, 42–49 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Odian, G. Principles of Polymerization (John Wiley & Sons, Inc. 2004); https://doi.org/10.1002/047147875X

  • Stevens, M. P. Polymer Chemistry: An Introduction 3rd edn (Oxford Univ. Press, Inc., 2009).

  • Whitfield, R., Jones, G. R., Truong, N. P., Manring, L. E. & Anastasaki, A. Solvent-free chemical recycling of polymethacrylates made by ATRP and RAFT polymerization: high-yielding depolymerization at low temperatures. Angew. Chem. Int. Ed. 62, e202309116 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides). Matter 4, 1352–1364 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, L. et al. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates. Science 380, 64–69 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442–448 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, Z. et al. Recyclable and malleable thermosets enabled by activating dormant dynamic linkages. Nat. Chem. 14, 1399–1404 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. S., Truong, N. P., Pei, Z., Coote, M. L. & Anastasaki, A. Reversing RAFT polymerization: Near-quantitative monomer generation via a catalyst-free depolymerization approach. J. Am. Chem. Soc. 144, 4678–4684 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, G. R. et al. Reversed controlled polymerization (RCP): depolymerization from well-defined polymers to monomers. J. Am. Chem. Soc. 145, 9898–9915 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, Z. et al. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv. 4, eaaq0508 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, B. et al. Acid-catalyzed disulfide-mediated reversible polymerization for recyclable dynamic covalent materials. Angew. Chem. Int. Ed. 62, e202215329 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, C., Quinn, E. C., Diment, W. T. & Chen, E. Y. X. Recyclable and (bio)degradable polyesters in a circular plastics economy. Chem. Rev. 124, 4393–4478 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, C. et al. Design principles for intrinsically circular polymers with tunable properties. Chem 7, 2896–2912 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rahimi, A. R. & Garciá, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article 

    Google Scholar
     

  • Sheldon, R. A. & Norton, M. Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chem. 22, 6310–6322 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q., Qu, D. H., Feringa, B. L. & Tian, H. Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc. 144, 2022–2033 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Wart, H. E., Lewis, A., Scheraga, H. A. & Saeva, F. D. Disulfide bond dihedral angles from Raman spectroscopy. Proc. Natl Acad. Sci. USA 70, 2619–2623 (1973).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y. et al. Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials. Sci. Adv. 8, eabk3286 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albanese, K. R., Read de Alaniz, J., Hawker, C. J. & Bates, C. M. From health supplement to versatile monomer: Radical ring-opening polymerization and depolymerization of α-lipoic acid. Polymer 304, 127167 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Du, T. et al. Controlled and regioselective ring-opening polymerization for poly(disulfide)s by anion-binding catalysis. J. Am. Chem. Soc. 145, 27788–27799 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guinée, J. B. et al. Life cycle assessment: past, present, and future. Environ. Sci. Technol. 45, 90–96 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Jenkins, J. D., Luke, M. & Thernstrom, S. Getting to zero carbon emissions in the electric power sector. Joule 2, 2498–2510 (2018).

    Article 

    Google Scholar
     

  • Aida, T. & Meijer, E. W. Supramolecular polymers—we’ve come full circle. Isr. J. Chem. 60, 33–47 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lehn, J. M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814–831 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Roy, N., Schädler, V. & Lehn, J. M. Supramolecular polymers: inherently dynamic materials. Acc. Chem. Res. 57, 349–361 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4097 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package-Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Goedecker, S. & Teter, M. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989).

    Article 

    Google Scholar
     

  • Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Ruiz, M. E. Documentation of changes implemented in the ecoinvent database v3.10 (2023).

  • Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).

    Article 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Nanomaterials Transformed by Engineering Shape, Not Chemistry

    January 25, 2026

    New catalyst makes plastic upcycling 10x more efficient than platinum

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026

    Gold nanoclusters – A promising atomically precise atomic aggregation-based drug and its biomedical applications

    January 22, 2026

    Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure

    January 21, 2026

    Mapping electron phases in nanotube arrays – Physics World

    January 20, 2026
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 202511 Views

    Hard-braking events as indicators of road segment crash risk

    January 14, 20269 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views
    Don't Miss

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Press Release Open Cosmos, the company building satellites to understand and connect the world, has…

    Achieving superior intent extraction through decomposition

    January 25, 2026

    How UX Research Reveals Hidden AI Orchestration Failures

    January 25, 2026

    ByteDance steps up its push into enterprise cloud services

    January 25, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Achieving superior intent extraction through decomposition

    January 25, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.