Close Menu
geekfence.comgeekfence.com
    What's Hot

    Designing trust & safety (T&S) in customer experience management (CXM): why T&S is becoming core to CXM operating model 

    January 24, 2026

    iPhone 18 Series Could Finally Bring Back Touch ID

    January 24, 2026

    The Visual Haystacks Benchmark! – The Berkeley Artificial Intelligence Research Blog

    January 24, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»When heat moves sideways – Physics World
    Nanotechnology

    When heat moves sideways – Physics World

    AdminBy AdminJanuary 8, 2026No Comments2 Mins Read4 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    When heat moves sideways – Physics World
    Share
    Facebook Twitter LinkedIn Pinterest Email


    MnPS₃ shows an unexpectedly strong thermal Hall effect, challenging current theories of quantum heat transport

    Waveform

    Waveform (Courtesy: iStock/Swillklitch)

    Heat travels across a metal by the movement of electrons. However, in an insulator there are no free charge carriers; instead, vibrations in the atoms (phonons) move the heat from hot regions to cool regions in a straight path. In some materials, when a magnetic field is applied, the phonons begin to move sideways, this is known as the Phonon Hall Effect. Quantised collective excitations of the spin structure, called magnons, can also do this via the Magnon Hall Effect. A combined effect occurs when magnons and phonons strongly interact and traverse sideways in the Magnon–Polaron Hall Effect.

    Scientists understand the quantum mechanical property known as Berry curvature that causes this transverse heat flow. Yet in some materials, the effect is greater than what Berry curvature alone can explain. In this research, an exceptionally large thermal Hall effect is recorded in MnPS₃, an insulating antiferromagnetic material with strong magnetoelastic coupling and a spin-flop transition. The thermal Hall angle remains large down to 4 K and cannot be accounted for by standard Berry curvature-based models.

    This work provides an in-depth analysis of the role of the spin-flop transition in MnPS₃’s thermal properties and highlights the need for new theoretical approaches to understand magnon–phonon coupling and scattering. Materials with large thermal Hall effects could be used to control heat in nanoscale devices such as thermal diodes and transistors.

    Do you want to learn more about this topic?

    Quantum-Hall physics and three dimensions Johannes Gooth, Stanislaw Galeski and Tobias Meng (2023)



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New catalyst makes plastic upcycling 10x more efficient than platinum

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026

    Gold nanoclusters – A promising atomically precise atomic aggregation-based drug and its biomedical applications

    January 22, 2026

    Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure

    January 21, 2026

    Mapping electron phases in nanotube arrays – Physics World

    January 20, 2026

    New SLAC Method Guides Better Cell Slice Preparation for Cryo-ET Imaging

    January 19, 2026
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 202511 Views

    Hard-braking events as indicators of road segment crash risk

    January 14, 20269 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views
    Don't Miss

    Designing trust & safety (T&S) in customer experience management (CXM): why T&S is becoming core to CXM operating model 

    January 24, 2026

    Customer Experience (CX) now sits at the intersection of Artificial Intelligence (AI)-enabled automation, identity and access journeys, AI-generated content…

    iPhone 18 Series Could Finally Bring Back Touch ID

    January 24, 2026

    The Visual Haystacks Benchmark! – The Berkeley Artificial Intelligence Research Blog

    January 24, 2026

    Data and Analytics Leaders Think They’re AI-Ready. They’re Probably Not. 

    January 24, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Designing trust & safety (T&S) in customer experience management (CXM): why T&S is becoming core to CXM operating model 

    January 24, 2026

    iPhone 18 Series Could Finally Bring Back Touch ID

    January 24, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.