Close Menu
geekfence.comgeekfence.com
    What's Hot

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    ALS stole this musician’s voice. AI let him sing again.

    February 14, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Ultra-rapid nanoplasmonic colorimetry in microfluidics for antimicrobial susceptibility testing directly from specimens
    Nanotechnology

    Ultra-rapid nanoplasmonic colorimetry in microfluidics for antimicrobial susceptibility testing directly from specimens

    AdminBy AdminFebruary 2, 2026No Comments10 Mins Read5 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Ultra-rapid nanoplasmonic colorimetry in microfluidics for antimicrobial susceptibility testing directly from specimens
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Essack, S. Y. & Lenglet, A. Bacterial antimicrobial resistance burden in Africa: accuracy, action, and alternatives. Lancet Glob. Heal. 12, e171–e172 (2023).

    Article 

    Google Scholar
     

  • McKay, G. & Nguyen, D. in Handbook of Antimicrobial Resistance (eds Berghuis, A. et al.) 203–229 (Springer, 2017).

  • Solà-Riera, C., Gupta, S., Ljunggren, H.-G. & Klingström, J. Orthohantaviruses belonging to three phylogroups all inhibit apoptosis in infected target cells. Sci. Rep. 9, 834 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Břinda, K. et al. Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing. Nat. Microbiol. 5, 455–464 (2020).

  • Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vodstrcil, L. A. et al. Near-to-patient-testing to inform targeted antibiotic use for sexually transmitted infections in a public sexual health clinic: the NEPTUNE cohort study. Lancet Reg. Health West. Pac. 44, 101005 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, M. P. et al. Blood culture results before and after antimicrobial administration in patients with severe manifestations of sepsis: a diagnostic study. Ann. Intern. Med. 171, 547–554 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Sartorius, B. et al. The burden of bacterial antimicrobial resistance in the WHO African region in 2019: a cross-country systematic analysis. Lancet Glob. Health 11, 201–216 (2023).

  • VITEK 2 AST–Gram Negative Ciprofloxacin (≤0.06–≥4 µg/mL) Standard No. K214023 (bioMérieux Inc., 2022); https://www.accessdata.fda.gov/cdrh_docs/reviews/K214023.pdf

  • MicroScan Dried Gram Negative MIC/Combo Panels with Ciprofloxacin (Cp) (0.004–8 µg/mL) Standard No. K193536 (Beckman Coulter Inc., 2020); https://www.accessdata.fda.gov/cdrh_docs/reviews/K193536.pdf

  • BD Phoenix Automated Microbiology System—GN Ceftaroline (0.0156–4 µg/mL) Standard No. K190905 (Becton Dickinson and Company, 2019); https://www.accessdata.fda.gov/cdrh_docs/reviews/K190905.pdf

  • Baltekin, Ö, Boucharin, A., Tano, E., Andersson, D. I. & Elf, J. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl Acad. Sci. USA 114, 9170–9175 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaushik, A. M. et al. Droplet-based single-cell measurements of 16S rRNA enable integrated bacteria identification and pheno-molecular antimicrobial susceptibility testing from clinical samples in 30 min. Adv. Sci. 8, 2003419 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, T. H. et al. Blood culture-free ultra-rapid antimicrobial susceptibility testing. Nature 632, 893–902 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kearns, H., Goodacre, R., Jamieson, L. E., Graham, D. & Faulds, K. SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal. Chem. 89, 12666–12673 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeeshan, Bahrami, S., Park, S. & Cho, S. Antibody functionalized capacitance sensor for label-free and real-time detection of bacteria and antibiotic susceptibility. Talanta 272, 125831 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. H. et al. Vertical capacitance aptasensors for real-time monitoring of bacterial growth and antibiotic susceptibility in blood. Biosens. Bioelectron. 143, 111623 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reszetnik, G. et al. Next-generation rapid phenotypic antimicrobial susceptibility testing. Nat. Commun. 15, 9719 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, K. et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7, 557–561 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daqiqeh Rezaei, S. et al. Nanophotonic structural colors. ACS Photonics 8, 18–33 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bhalla, N. & Shen, A. Q. Localized surface plasmon resonance sensing and its interplay with fluidics. Langmuir 40, 9842–9854 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schirato, A. et al. Quantifying ultrafast energy transfer from plasmonic hot carriers for pulsed photocatalysis on nanostructures. ACS Nano 18, 18933–18947 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics 3, 627–633 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y., Ng, C., König, T. A. F. & Fery, A. Tackling the scalability challenge in plasmonics by wrinkle-assisted colloidal self-assembly. Langmuir 35, 8629–8645 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Chen, X. & Gu, N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J. Phys. Chem. B 112, 16647–16653 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alafeef, M., Moitra, P., Dighe, K. & Pan, D. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc. 16, 3141–3162 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santopolo, G., Doménech-Sánchez, A., Russell, S. M. & de la Rica, R. Ultrafast and ultrasensitive naked-eye detection of urease-positive bacteria with plasmonic nanosensors. ACS Sens. 4, 961–967 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, H., Wang, T., Su, Z., Pang, H. & Chen, C. Recent progress and challenges in plasmonic nanomaterials. Chem. Rev. 122, 846–873 (2022).

  • Choi, S., Zuo, J., Das, N., Yao, Y. & Wang, C. Scalable nanoimprint manufacturing of functional multilayer metasurface devices. Adv. Funct. Mater. 34, 2404852 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y., Zhang, L., Yang, J. K. W., Yeo, S. P. & Qiu, C. W. Color generation via subwavelength plasmonic nanostructures. Nanoscale 7, 6409–6419 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, K. T. P., Liu, H., Liu, Y. & Yang, J. K. W. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 10, 25 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daqiqeh Rezaei, S. et al. Tunable, cost-effective, and scalable structural colors for sensing and consumer products. Adv. Opt. Mater. 7, 1900735 (2019).

    Article 
    CAS 

    Google Scholar
     

  • AbdElFatah, T. et al. Nanoplasmonic amplification in microfluidics enables accelerated colorimetric quantification of nucleic acid biomarkers from pathogens. Nat. Nanotechnol. 18, 922–932 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riss, T. L. et al. in Assay Guidance Manual 1–25 (Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004).

  • Braissant, O., Astasov-Frauenhoffer, M., Waltimo, T. & Bonkat, G. A review of methods to determine viability, vitality, and metabolic rates in microbiology. Front. Microbiol. 11, 547458 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Performance Standards for Antimicrobial Susceptibility Testing Standard No. M100, 31st edn (Clinical and Laboratory Standards Institute, 2021).

  • Uzarski, J. S., DiVito, M. D., Wertheim, J. A. & Miller, W. M. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials 129, 163–175 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. L., Steele, T. W. J. & Stuckey, D. C. Metabolic reduction of resazurin; location within the cell for cytotoxicity assays. Biotechnol. Bioeng. 115, 351–358 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Primack, W., Bukowski, T., Sutherland, R., Gravens-Mueller, L. & Carpenter, M. What urinary colony count indicates a urinary tract infection in children? J. Pediatr. 191, 259–261.e1 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Standard No. M07, 11th edn (Clinical and Laboratory Standards Institute, 2018).

  • Hooton, T. M. et al. Diagnosis, prevention, and treatment of catheter-aassociated urinary tract infection in adults: 2009 international clinical practice guidelines from the infectious diseases society of America. Clin. Infect. Dis. 50, 625–663 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Kalil, A. C. et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 63, e61–e111 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose, W. E. et al. Increased endovascular Staphylococcus aureus inoculum is the link between elevated serum interleukin 10 concentrations and mortality in patients with bacteremia. Clin. Infect. Dis. 64, 1406–1412 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopes, A. L. K. et al. Development of a magnetic separation method to capture sepsis associated bacteria in blood. J. Microbiol. Methods (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yagupsky, P. & Nolte, F. S. Quantitative aspects of septicemia. Clin. Microbiol. Rev. (1990).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mermel, L. A. et al. Quantitative analysis and molecular fingerprinting of methicillin-resistant Staphylococcus aureus nasal colonization in different patient populations: a prospective, multicenter study. Infect. Control Hosp. Epidemiol. 31, 592–597 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Hara, L. M. et al. Optimizing contact precautions to curb the spread of antibiotic-resistant bacteria in hospitals: a multicenter cohort study to identify patient characteristics and healthcare personnel interactions associated with transmission of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammed, M. I. & Desmulliez, M. P. Y. Characterization and theoretical analysis of rapidly prototyped capillary action autonomous microfluidic systems. J. Microelectromech. Syst. 23, 1408–1416 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Glière, A. & Delattre, C. Modeling and fabrication of capillary stop valves for planar microfluidic systems. Sens. Actuators A Phys. 130–131, 601–608 (2006).

    Article 

    Google Scholar
     

  • Olanrewaju, A., Beaugrand, M., Yafia, M. & Juncker, D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18, 2323–2347 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papadimitriou, V. A., Segerink, L. I., van den Berg, A. & Eijkel, J. C. T. 3D capillary stop valves for versatile patterning inside microfluidic chips. Anal. Chim. Acta 1000, 232–238 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jalali, M. et al. Plasmonic nanobowtiefluidic device for sensitive detection of glioma extracellular vesicles by Raman spectrometry. Lab Chip 21, 855–866 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • IInnocenzi, P. et al. Hierarchical mesoporous films: from self-assembly to porosity with different length scales. Chem. Mater. 23, 2501–2509 (2011).

    Article 

    Google Scholar
     

  • Sergyan, S. Color histogram features based image classification in content-based image retrieval systems. In Proc. 6th International Symposium on Applied Machine Intelligence and Informatics 221–224 (IEEE, 2008).

  • Zhou, L., Menon, S. S., Li, X., Zhang, M. & Malakooti, M. H. Machine learning enables reliable colorimetric detection of pH and glucose in wearable sweat sensors. Adv. Mater. Technol. 9, 2401121 (2024).


    Google Scholar
     

  • Pisner, D. A. & Schnyer, D. M. in Machine Learning: Methods and Applications to Brain Disorders (eds Mechelli, A. & Vieira, S.) 101–121 (Academic Press, 2020).

  • Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & Freitas, N. de Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Article 

    Google Scholar
     

  • Christianson, S. et al. Comparative genomics of Canadian epidemic lineages of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 45, 1904–1911 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, J. et al. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J. Clin. Microbiol. 46, 2800–2804 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isenberg, H. in Clinical Microbiology Procedures Handbook 3rd edn, Ch. 3.12 (American Society for Microbiology, 2009).

  • McCarter, Y. S. et al. Cumitech 2C: Laboratory Diagnosis of Urinary Tract Infections (ed. Sharp, S. E.) (American Society for Microbiology, 2009).

  • Zhang, M. et al. Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv. Sci. 7, 2001452 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, A. V. et al. Ladder-shaped microfluidic system for rapid antibiotic susceptibility testing. Commun. Eng. 2, 15 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Huang, R. et al. Bioinspired plasmonic nanosensor for on-site antimicrobial susceptibility testing in urine samples. ACS Nano 16, 19229–19239 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, C.-S. et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 10, 4927 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Issue 86

    February 14, 2026

    What shape is a uranium nucleus? – Physics World

    February 13, 2026

    First Look into the Electrostatic Landscape of a Moiré Unit Cell

    February 12, 2026

    Scientists finally solve a 100-year-old mystery in the air we breathe

    February 11, 2026

    Molecularly imprinted nanoreactors: Bridging enzyme mimicry and synthetic catalysis

    February 9, 2026

    Tandem architectures for electrochemical CO2 reduction: from coupled atomic sites to tandem electrolysers

    February 8, 2026
    Top Posts

    Hard-braking events as indicators of road segment crash risk

    January 14, 202617 Views

    Understanding U-Net Architecture in Deep Learning

    November 25, 202512 Views

    How to integrate a graph database into your RAG pipeline

    February 8, 20268 Views
    Don't Miss

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Summary created by Smart Answers AIIn summary:Tech Advisor highlights six critical errors in Emerald Fennell’s…

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    ALS stole this musician’s voice. AI let him sing again.

    February 14, 2026

    What is Prompt Chaining?

    February 14, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.