Close Menu
geekfence.comgeekfence.com
    What's Hot

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    ALS stole this musician’s voice. AI let him sing again.

    February 14, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Revisiting ion transport through micropores: significant and non-negligible surface transport
    Nanotechnology

    Revisiting ion transport through micropores: significant and non-negligible surface transport

    AdminBy AdminJanuary 5, 2026No Comments2 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Revisiting ion transport through micropores: significant and non-negligible surface transport
    Share
    Facebook Twitter LinkedIn Pinterest Email


    From a theoretical perspective, ion transport through micrometer or nanometer-sized pores under a cross-pore electric field can be described well by the Hall equation, involving only the bulk conductivity, if the solution is not too dilute. For dilute solutions, it is predicted that the surface conduction will become important, especially in nanopores. Nonetheless, this remains unsupported by experiments, especially for micropores, where the experimentally observed ion conductance is intuitively thought to be dominated by bulk conduction. Herein, our electrical measurements of ion transport through silicon nitride pores having diameters ranging from sub-µm up to a few µm show that the surface conduction can be significant and non-negligible in such large pore systems, especially at solution concentrations lower than 1 mM. In the latter case, the observed surface conductivity of the order of 1 nS can dominate over the bulk contribution, yielding a Dukhin length comparable to or even larger than the pore size and a Dukhin number up to 10. The surface conduction can be further enhanced by covering the silicon nitride surface with two-dimensional (2D) crystals such as graphene, graphene oxide, or monolayer titania sheets. The resulting surface conductivity is seen to increase upon increasing the solution concentration and can be increased by up to one or two orders of magnitude. Our observations provide insights into ion transport in micropore systems and suggest the possibility of exploiting surface conduction in such large pores for new technologies that were previously believed to apply only to nanopores.

    Graphical abstract: Revisiting ion transport through micropores: significant and non-negligible surface transport


    You have access to this article



    Please wait while we load your content…


    Something went wrong. Try again?



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Issue 86

    February 14, 2026

    What shape is a uranium nucleus? – Physics World

    February 13, 2026

    First Look into the Electrostatic Landscape of a Moiré Unit Cell

    February 12, 2026

    Scientists finally solve a 100-year-old mystery in the air we breathe

    February 11, 2026

    Molecularly imprinted nanoreactors: Bridging enzyme mimicry and synthetic catalysis

    February 9, 2026

    Tandem architectures for electrochemical CO2 reduction: from coupled atomic sites to tandem electrolysers

    February 8, 2026
    Top Posts

    Hard-braking events as indicators of road segment crash risk

    January 14, 202617 Views

    Understanding U-Net Architecture in Deep Learning

    November 25, 202512 Views

    How to integrate a graph database into your RAG pipeline

    February 8, 20268 Views
    Don't Miss

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Summary created by Smart Answers AIIn summary:Tech Advisor highlights six critical errors in Emerald Fennell’s…

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    ALS stole this musician’s voice. AI let him sing again.

    February 14, 2026

    What is Prompt Chaining?

    February 14, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.