Close Menu
geekfence.comgeekfence.com
    What's Hot

    HCLTech acquires HPE telco unit

    December 29, 2025

    This tiny chip could change the future of quantum computing

    December 29, 2025

    What’s In a Name? Mainframe GDGs Get the Job Done

    December 29, 2025
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Mechanical strength and biomechanics of extracellular vesicles
    Nanotechnology

    Mechanical strength and biomechanics of extracellular vesicles

    AdminBy AdminOctober 29, 2025No Comments3 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Mechanical strength and biomechanics of extracellular vesicles
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Extracellular vesicles (EVs) constitute a diverse family, with major subtypes including exosomes (30–150 nm), released through fusion of multivesicular bodies with the cell membrane; microvesicles (100–1000 nm), generated by budding from the plasma membrane; and apoptotic bodies (500–2000 nm), formed by the disintegration of apoptotic cells [1]. Additionally, other subtypes such as large vesicles (>1000 nm), elongated particles (50–500 nm), and supramolecular attack particles are also recognized [2]. These EVs play a pivotal role in cell biology, including the transport and recycling of intracellular and membrane proteins, intercellular transfer of proteins, nucleic acids, and metabolites, and the transmission of neural signals [3], [4]. Consequently, EVs, which carry critical biological information, not only serve as essential mediators of cellular communication but also hold great potential as biomarkers and therapeutic delivery vehicles, with significant applications in the diagnosis and treatment of various diseases [5], [6].

    Biomechanics is the study of the mechanical properties and response behaviors of materials or biological tissues under external forces, encompassing structural stability, deformation, and mechanical regulation mechanisms across molecular to macroscopic scales [7]. The mechanical strength of EVs plays a crucial role in adapting to the biomechanical characteristics of the body, significantly influencing their biological function and applications. These mechanical properties directly impact the stability of EVs in circulation, their tissue penetration ability, and the efficiency of phagocytosis and recognition by target cells [8], [9]. For instance, EVs with higher mechanical strength exhibit enhanced stability in the bloodstream, while better deformability facilitates their transport through complex tissue microenvironments. Furthermore, EVs derived from different sources can inherit some of the mechanical properties of their parent cells, reflecting pathological states, thus serving as valuable diagnostic biomarkers. Therefore, elucidating the mechanical performance and general biomechanical principles of EVs is essential for optimizing their applications in drug delivery, disease diagnosis, and therapeutic strategies.

    This review begins with the measurement techniques and key parameters of EV mechanical properties, systematically analyzing the structural features and environmental factors that influence their mechanical performance. It further summarizes the biomechanical principles of EVs in vivo (Fig. 1). The article also highlights recent advancements in the application of EVs in disease diagnosis and precision medicine, guided by these principles, revealing their vast potential and translational value in the medical field. Overall, this work provides a forward-looking perspective for expanding the application prospects of EVs based on biomechanical principles and lays a theoretical foundation and guiding framework for the clinical translation of vesicle-based designs.



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Emerging quantitative techniques for characterizing nucleic acid-involved molecular interactions

    December 29, 2025

    A self-delivering antimicrobial peptide hydrogel for treatment of staphylococcal infections in orthopedic implants

    December 28, 2025

    A biohybrid chiral hydrogel enhances preclinical postoperative glioblastoma therapy by multi-pronged inhibition of tumour stemness

    December 27, 2025

    The Graphene Investment Opportunity Report 2025

    December 26, 2025

    How does quantum entanglement move between different particles? – Physics World

    December 25, 2025

    Safer, Cheaper Method for Creating Futuristic MXenes

    December 24, 2025
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 20258 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views

    Here’s the latest company planning for gene-edited babies

    November 2, 20257 Views
    Don't Miss

    HCLTech acquires HPE telco unit

    December 29, 2025

    HCLTech moves toward a future of AI-driven growth In sum – what we know: The…

    This tiny chip could change the future of quantum computing

    December 29, 2025

    What’s In a Name? Mainframe GDGs Get the Job Done

    December 29, 2025

    Microsoft named a Leader in Gartner® Magic Quadrant™ for AI Application Development Platforms

    December 29, 2025
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    HCLTech acquires HPE telco unit

    December 29, 2025

    This tiny chip could change the future of quantum computing

    December 29, 2025

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.