Close Menu
geekfence.comgeekfence.com
    What's Hot

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    ALS stole this musician’s voice. AI let him sing again.

    February 14, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Interface engineered ferromagnetism – Physics World
    Nanotechnology

    Interface engineered ferromagnetism – Physics World

    AdminBy AdminOctober 29, 2025No Comments2 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Interface engineered ferromagnetism – Physics World
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Researchers enhance a 2D ferromagnetic material by layering with a topological insulator to reveal stronger, tuneable behaviour for next-generation quantum devices 

    Quantum tech

    Quantum tech (Courtesy: Shutterstock/Dmitriy Rybin)

    Exchange-coupled interfaces offer a powerful route to stabilising and enhancing ferromagnetic properties in two-dimensional materials, such as transition metal chalcogenides. These materials exhibit strong correlations among charge, spin, orbital, and lattice degrees of freedom, making them an exciting area for emergent quantum phenomena.

    Cr₂Te₃’s crystal structure naturally forms layers that behave like two-dimensional sheets of magnetic material. Each layer has magnetic ordering (ferromagnetism), but the layers are not tightly bonded in the third dimension and are considered “quasi-2D.” These layers are useful for interface engineering. Using a vacuum-based technique for atomically precise thin-film growth, known as molecular beam epitaxy, the researchers demonstrate wafer-scale synthesis of Cr₂Te₃ down to monolayer thickness on insulating substrates. Remarkably, robust ferromagnetism persists even at the monolayer limit, a critical milestone for 2D magnetism.

    When Cr₂Te₃ is proximitized (an effect that occurs when one material is placed in close physical contact with another so that its properties are influenced by the neighbouring material) to a topological insulator, specifically (Bi,Sb)₂Te₃, the Curie temperature, the threshold between ferromagnetic and paramagnetic phases, increases from ~100 K to ~120 K. This enhancement is experimentally confirmed via polarized neutron reflectometry, which reveals a substantial boost in magnetization at the interface.

    Theoretical modelling attributes this magnetic enhancement to the Bloembergen–Rowland interaction which is a long-range exchange mechanism mediated by virtual intraband transitions. Crucially, this interaction is facilitated by the topological insulator’s topologically protected surface states, which are spin-polarized and robust against disorder. These states enable long-distance magnetic coupling across the interface, suggesting a universal mechanism for Curie temperature enhancement in topological insulator-coupled magnetic heterostructures.

    This work not only demonstrates a method for stabilizing 2D ferromagnetism but also opens the door to topological electronics, where magnetism and topology are co-engineered at the interface. Such systems could enable novel quantum hybrid devices, including spintronic components, topological transistors, and platforms for realizing exotic quasiparticles like Majorana fermions.

    Do you want to learn more about this topic?

    Interacting topological insulators: a review by Stephan Rachel (2018)



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Issue 86

    February 14, 2026

    What shape is a uranium nucleus? – Physics World

    February 13, 2026

    First Look into the Electrostatic Landscape of a Moiré Unit Cell

    February 12, 2026

    Scientists finally solve a 100-year-old mystery in the air we breathe

    February 11, 2026

    Molecularly imprinted nanoreactors: Bridging enzyme mimicry and synthetic catalysis

    February 9, 2026

    Tandem architectures for electrochemical CO2 reduction: from coupled atomic sites to tandem electrolysers

    February 8, 2026
    Top Posts

    Hard-braking events as indicators of road segment crash risk

    January 14, 202617 Views

    Understanding U-Net Architecture in Deep Learning

    November 25, 202512 Views

    How to integrate a graph database into your RAG pipeline

    February 8, 20268 Views
    Don't Miss

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Summary created by Smart Answers AIIn summary:Tech Advisor highlights six critical errors in Emerald Fennell’s…

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    ALS stole this musician’s voice. AI let him sing again.

    February 14, 2026

    What is Prompt Chaining?

    February 14, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Emerald Fennell’s Wuthering Heights Review

    February 14, 2026

    Infrastructure, Not Compute, is the Real AI Bottleneck

    February 14, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.