Close Menu
geekfence.comgeekfence.com
    What's Hot

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Achieving superior intent extraction through decomposition

    January 25, 2026

    How UX Research Reveals Hidden AI Orchestration Failures

    January 25, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»High-Density Conductance States and Synaptic Plasticity in SnP2S6 Memristors for Neuromorphic Computing
    Nanotechnology

    High-Density Conductance States and Synaptic Plasticity in SnP2S6 Memristors for Neuromorphic Computing

    AdminBy AdminNovember 24, 2025No Comments1 Min Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    High-Density Conductance States and Synaptic Plasticity in SnP2S6 Memristors for Neuromorphic Computing
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Memristors with programmable conductance are considered promising for energy-efficient analog memory and neuromorphic computing in edge AI systems. To improve memory density and computational efficiency, achieving multiple stable conductance states within a single device is particularly important. In this work, we demonstrate multilevel conductance tuning in few-layer tin hexathiophosphate (SnP2S6, SPS) memristors, achieving 325 stable states through a pulse-based programming scheme. By analyzing conductive filament evolution, we devised a voltage-pulse approach that effectively suppresses current noise, thereby maximizing the number of distinguishable states within the device ON/OFF ratio. Furthermore, we experimentally emulated synaptic plasticity behaviors including long-term potentiation and depression, and validated their performance through artificial neural network simulations on digit classification. These results highlight the potential of SPS memristors as high-resolution analog memory and as building blocks for neuromorphic computing, offering a pathway toward compact and efficient architectures for next-generation edge intelligence.


    You have access to this article


    High-Density Conductance States and Synaptic Plasticity in SnP2S6 Memristors for Neuromorphic Computing
    Please wait while we load your content…


    Something went wrong. Try again?



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Nanomaterials Transformed by Engineering Shape, Not Chemistry

    January 25, 2026

    New catalyst makes plastic upcycling 10x more efficient than platinum

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026

    Gold nanoclusters – A promising atomically precise atomic aggregation-based drug and its biomedical applications

    January 22, 2026

    Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure

    January 21, 2026

    Mapping electron phases in nanotube arrays – Physics World

    January 20, 2026
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 202511 Views

    Hard-braking events as indicators of road segment crash risk

    January 14, 20269 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views
    Don't Miss

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Press Release Open Cosmos, the company building satellites to understand and connect the world, has…

    Achieving superior intent extraction through decomposition

    January 25, 2026

    How UX Research Reveals Hidden AI Orchestration Failures

    January 25, 2026

    ByteDance steps up its push into enterprise cloud services

    January 25, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Achieving superior intent extraction through decomposition

    January 25, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.