Close Menu
geekfence.comgeekfence.com
    What's Hot

    Read This Before Your Next Subsea Networks Event

    January 27, 2026

    Inside OpenAI’s big play for science 

    January 27, 2026

    How Data Analytics Can Help You Construct A Financial Weather Map

    January 27, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Engineered mucus-tethering bispecific nanobodies enhance mucosal immunity against respiratory pathogens
    Nanotechnology

    Engineered mucus-tethering bispecific nanobodies enhance mucosal immunity against respiratory pathogens

    AdminBy AdminJanuary 27, 2026No Comments7 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Engineered mucus-tethering bispecific nanobodies enhance mucosal immunity against respiratory pathogens
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, I. F., Becker, A. D., Grenfell, B. T. & Metcalf, C. J. E. Disease and healthcare burden of COVID-19 in the United States. Nat. Med. 26, 1212–1217 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flerlage, T., Boyd, D. F., Meliopoulos, V., Thomas, P. G. & Schultz-Cherry, S. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat. Rev. Microbiol. 19, 425–441 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N. Engl. J. Med. 363, 2233–2247 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostedgaard, L. S. et al. Gel-forming mucins form distinct morphologic structures in airways. Proc. Natl Acad. Sci. USA 114, 6842–6847 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, H. Y. et al. Role for mucin-5AC in upper and lower airway pathogenesis in mice. Toxicol. Pathol. 49, 1077–1099 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, M. G. et al. Muc5b is required for airway defence. Nature 505, 412–416 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zanin, M., Baviskar, P., Webster, R. & Webby, R. The interaction between respiratory pathogens and mucus. Cell Host Microbe 19, 159–168 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russell, C. J., Hu, M. & Okda, F. A. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 26, 841–853 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vahey, M. D. & Fletcher, D. A. Influenza A virus surface proteins are organized to help penetrate host mucus. eLife 8, e43764 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H. D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 78, 12665–12667 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, P. S. et al. Association of early oseltamivir with improved outcomes in hospitalized children with influenza, 2007-2020. JAMA Pediatr. 176, e223261 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. T. et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 186, 112–130 e120 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desmyter, A. et al. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol. 3, 803–811 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, T. H. & Jung, S. T. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp. Mol. Med. 51, 1–9 (2019).

    PubMed 

    Google Scholar
     

  • Chen, Z. S. et al. Influenza A virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection. Nat. Commun. 16, 432 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanke, L. et al. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nat. Commun. 13, 155 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, J. T., Voynow, J. A., Peters, K. W. & Rose, M. C. Respiratory carcinoma cell lines. MUC genes and glycoconjugates. Am. J. Respir. Cell Mol. Biol. 20, 500–510 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreft, M. E. et al. The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur. J. Pharm. Sci. 69, 1–9 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malaker, S. A. et al. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc. Natl Acad. Sci. USA 116, 7278–7287 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alevy, Y. G. et al. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J. Clin. Invest. 122, 4555–4568 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muyldermans, S. A guide to: generation and design of nanobodies. FEBS J. 288, 2084–2102 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMahon, C. et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 25, 289–296 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Hedgehog pathway activation through nanobody-mediated conformational blockade of the patched sterol conduit. Proc. Natl Acad. Sci. USA 117, 28838–28846 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, R. L., Sequeira, R. P. & Clarke, T. B. The microbiota protects against respiratory infection via GM-CSF signaling. Nat. Commun. 8, 1512 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordan, C. K. I. & Clarke, T. B. How does the microbiota control systemic innate immunity?. Trends Immunol. 45, 94–102 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blazejewska, P. et al. Pathogenicity of different PR8 influenza A virus variants in mice is determined by both viral and host factors. Virology 412, 36–45 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Port, J. R. et al. SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nat. Commun. 12, 4985 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morens, D. M., Taubenberger, J. K. & Fauci, A. S. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe 31, 146–157 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavelle, E. C. & Ward, R. W. Mucosal vaccines—fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMahan, K. et al. Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques. Nature 626, 385–391 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, T. et al. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 624, 630–638 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lillehoj, E. P., Kato, K., Lu, W. & Kim, K. C. Cellular and molecular biology of airway mucins. Int. Rev. Cell Mol. Biol. 303, 139–202 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehre, C. et al. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proc. Natl Acad. Sci. USA 109, 16528–16533 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y. et al. Pharmaceutical strategies to extend pulmonary exposure of inhaled medicines. Acta Pharm. Sin B 11, 2565–2584 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller, L. A., Merkel, O. & Popp, A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 12, 735–757 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Famta, P. et al. Albumin-hitchhiking: fostering the pharmacokinetics and anticancer therapeutics. J. Control. Release 353, 166–185 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, H., Quintana, J., Weissleder, R., Parangi, S. & Miller, M. Deciphering albumin-directed drug delivery by imaging. Adv. Drug Deliv. Rev. 185, 114237 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markov, P. V. et al. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 21, 361–379 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halfmann, P. J. et al. Efficacy of vaccination and previous infection against the Omicron BA.1 variant in Syrian hamsters. Cell Rep. 39, 110688 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dewald, F. et al. Impaired humoral immunity to BQ.1.1 in convalescent and vaccinated patients. Nat. Commun. 14, 2835 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17, 1027–1037 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, M. D. et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15, 646–655 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crawford, K. H. D. et al. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses 12, 513 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harcourt, J. et al. Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States. Emerg. Infect. Dis. 26, 1266–1273 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Donnell, K. L. et al. Pathogenic and transcriptomic differences of emerging SARS-CoV-2 variants in the Syrian golden hamster model. EBioMedicine 73, 103675 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586, 578–582 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyerholz, D. K. & Beck, A. P. Histopathologic evaluation and scoring of viral lung infection. Methods Mol. Biol. 2099, 205–220 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    A surprising critical state emerges in active nematic materials – Physics World

    January 26, 2026

    Nanomaterials Transformed by Engineering Shape, Not Chemistry

    January 25, 2026

    New catalyst makes plastic upcycling 10x more efficient than platinum

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026

    Gold nanoclusters – A promising atomically precise atomic aggregation-based drug and its biomedical applications

    January 22, 2026

    Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure

    January 21, 2026
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 202511 Views

    Hard-braking events as indicators of road segment crash risk

    January 14, 202610 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views
    Don't Miss

    Read This Before Your Next Subsea Networks Event

    January 27, 2026

    It’s conference season and our traveling team of experts is preparing for lots of upcoming…

    Inside OpenAI’s big play for science 

    January 27, 2026

    How Data Analytics Can Help You Construct A Financial Weather Map

    January 27, 2026

    Maia 200: The AI accelerator built for inference

    January 27, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Read This Before Your Next Subsea Networks Event

    January 27, 2026

    Inside OpenAI’s big play for science 

    January 27, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.