Kibria, M. G. et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 201807166 (2019).
Zhao, Q. et al. Selective etching quaternary MAX phase toward single atom copper immobilized mxene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15, 4927–4936 (2021).
Torbensen, K. et al. Molecular catalysts boost the rate of electrolytic CO2 reduction. ACS Energy Lett. 5, 1512–1518 (2020).
Bonin, J., Maurin, A. & Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal-based complexes. Recent advances. Coord. Chem. Rev. 334, 184–198 (2017).
Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).
Boutin, E. et al. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).
Rooney, C. L. et al. Active sites of cobalt phthalocyanine in electrocatalytic CO2 reduction to methanol. Angew. Chem. Int. Ed. 63, e202310623 (2024).
Li, J. et al. Mechanism-guided realization of selective carbon monoxide electroreduction to methanol. Nat. Synth. 2, 1194–1201 (2023).
Boutin, E., Salamé, A., Merakeb, L., Chatterjee, T. & Robert, M. On the existence and role of formaldehyde during aqueous electrochemical reduction of carbon monoxide to methanol by cobalt phthalocyanine. Chemistry 28, e202200697 (2022).
Ren, X. et al. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nat. Commun. 14, 3401 (2023).
Ding, J. et al. Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH3OH. Nat. Commun. 14, 6550 (2023).
Su, J. et al. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 6, 818–828 (2023).
Yao, L. et al. Unlocking the potential for methanol synthesis via electrochemical CO2 reduction using CoPc-based molecular catalysts. ACS Nano 18, 21623–21632 (2024).
Cheon, S., Li, J. & Wang, H. In situ generated CO enables high-current CO2 reduction to methanol in a molecular catalyst layer. J. Am. Chem. Soc. 146, 16348–16354 (2024).
Zhu, Q. et al. The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO2 reduction. Nat. Catal. 7, 987–999 (2024).
Yu, S. et al. CO2-to-methanol electroconversion on a molecular cobalt catalyst facilitated by acidic cations. Nat. Catal. 7, 1000–1009 (2024).
Singh, A. et al. Molecular electrochemical catalysis of CO-to-formaldehyde conversion with a cobalt complex. J. Am. Chem. Soc. 146, 22129–22133 (2024).
Hutchison, P. et al. Proton-coupled electron transfer mechanisms for CO2 reduction to methanol catalyzed by surface-immobilized cobalt phthalocyanine. J. Am. Chem. Soc. 146, 20230–20240 (2024).
Erick Huang, J. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).
Ma, Z. et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 13, 7596 (2022).
Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).
Monteiro, M. C. O. et al. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 144, 1589–1602 (2022).
Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021).
Sun, M., Cheng, J. & Yamauchi, M. Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction. Nat. Commun. 15, 491 (2024).
Xing, Z., Hu, X. & Feng, X. Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 6, 1694–1702 (2021).
Feng, S. et al. Stabilizing *CO2 intermediates at the acidic interface using molecularly dispersed cobalt phthalocyanine as catalysts for CO2 reduction. Angew. Chem. Int. Ed. 136, e202317942 (2024).
Fan, M. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023).
Li, G. et al. Backbone engineering of polymeric catalysts for high-performance CO2 reduction in bipolar membrane zero-gap electrolyzer. Angew. Chem. Int. Ed. 63, e202400414 (2024).
Zhang, Q. et al. A covalent molecular design enabling efficient CO2 reduction in strong acids. Nat. Synth. 3, 1231–1242 (2024).
Song, Y. et al. Atomically thin, ionic-covalent organic nanosheets for stable, high performance carbon dioxide electroreduction. Adv. Mater. 34, 2110496 (2022).
Song, Y. et al. Ultrathin, cationic covalent organic nanosheets for enhanced CO2 electroreduction to methanol. Adv. Mater. 36, 2310037 (2024).
Yao, Y., Delmo, E. P. & Shao, M. The electrode/electrolyte interface study during the electrochemical CO2 reduction in acidic electrolytes. Angew. Chem. Int. Ed. 64, e202415894 (2025).
Bernasconi, F. et al. Operando observation of (bi)carbonate precipitation during electrochemical CO2 reduction in strongly acidic electrolytes. ACS Catal. 14, 8232–8237 (2024).
Su, Y. et al. Exploring the impact of Nafion modifier on electrocatalytic CO2 reduction over Cu catalyst. J. Energy Chem. 88, 543–551 (2024).
Wang, Y. H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).
Li, C. Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).
Huang, B. et al. Cation-dependent interfacial structures and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397–4411 (2021).
Wang, Y. et al. Strong hydrogen-bonded interfacial water inhibiting hydrogen evolution kinetics to promote electrochemical CO2 reduction to C2+. ACS Catal. 14, 3457–3465 (2024).
Ohlin, C. A., Dyson, P. J. & Laurenczy, G. Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chem. Commun. 4, 1070–1071 (2004).
Yao, Y. et al. A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights. Nat. Commun. 15, 1257 (2024).
Zhu, S., Jiang, B., Cai, W., Bin & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).
Wang, H., Zhu, J., Ren, X., Tong, Y. & Chen, P. Heterogeneous cobalt phthalocyanine/sulfur-modified hollow carbon sphere for boosting CO2 electroreduction and Zn-CO2 batteries. Adv. Funct. Mater. 34, 202312552 (2023).
Lyu, F. et al. Pre-activation of CO2 at cobalt phthalocyanine-Mg(OH)2 interface for enhanced turnover rate. Adv. Funct. Mater. 33, 2214609 (2023).
Have, I. C. T. et al. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat. Commun. 13, 324 (2022).
Wohar, M. M. & Jagodzinski, P. W. Infrared spectra of H2CO, H213CO, D2CO, and D213CO and anomalous values in vibrational force fields. J. Mol. Spectrosc. 148, 13–19 (1991).
Monteiro, M. C. O., Jacobse, L. & Koper, M. T. M. Understanding the voltammetry of bulk CO electrooxidation in neutral media through combined SECM measurements. J. Phys. Chem. Lett. 11, 9708–9713 (2020).
Watkins, N. B. et al. Hydrodynamics change Tafel slopes in electrochemical CO2 reduction on copper. ACS Energy Lett. 8, 2185–2192 (2023).
Latiff, N. M. et al. Carbon based copper(II) phthalocyanine catalysts for electrochemical CO2 reduction: effect of carbon support on electrocatalytic activity. Carbon 168, 245–253 (2020).
Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).
Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Cundary, T. R. & Gordon, M. S. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).
Rappe, A. K. & Goddard, W. A. III Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).

