Close Menu
geekfence.comgeekfence.com
    What's Hot

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Achieving superior intent extraction through decomposition

    January 25, 2026

    How UX Research Reveals Hidden AI Orchestration Failures

    January 25, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Efficient CO2-to-methanol electrocatalysis in acidic media via microenvironment-tuned cobalt phthalocyanine
    Nanotechnology

    Efficient CO2-to-methanol electrocatalysis in acidic media via microenvironment-tuned cobalt phthalocyanine

    AdminBy AdminNovember 22, 2025No Comments8 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Efficient CO2-to-methanol electrocatalysis in acidic media via microenvironment-tuned cobalt phthalocyanine
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Kibria, M. G. et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 201807166 (2019).

    Article 

    Google Scholar
     

  • Zhao, Q. et al. Selective etching quaternary MAX phase toward single atom copper immobilized mxene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15, 4927–4936 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torbensen, K. et al. Molecular catalysts boost the rate of electrolytic CO2 reduction. ACS Energy Lett. 5, 1512–1518 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bonin, J., Maurin, A. & Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal-based complexes. Recent advances. Coord. Chem. Rev. 334, 184–198 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boutin, E. et al. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rooney, C. L. et al. Active sites of cobalt phthalocyanine in electrocatalytic CO2 reduction to methanol. Angew. Chem. Int. Ed. 63, e202310623 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Mechanism-guided realization of selective carbon monoxide electroreduction to methanol. Nat. Synth. 2, 1194–1201 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Boutin, E., Salamé, A., Merakeb, L., Chatterjee, T. & Robert, M. On the existence and role of formaldehyde during aqueous electrochemical reduction of carbon monoxide to methanol by cobalt phthalocyanine. Chemistry 28, e202200697 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, X. et al. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nat. Commun. 14, 3401 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH3OH. Nat. Commun. 14, 6550 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, J. et al. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 6, 818–828 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yao, L. et al. Unlocking the potential for methanol synthesis via electrochemical CO2 reduction using CoPc-based molecular catalysts. ACS Nano 18, 21623–21632 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheon, S., Li, J. & Wang, H. In situ generated CO enables high-current CO2 reduction to methanol in a molecular catalyst layer. J. Am. Chem. Soc. 146, 16348–16354 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Q. et al. The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO2 reduction. Nat. Catal. 7, 987–999 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yu, S. et al. CO2-to-methanol electroconversion on a molecular cobalt catalyst facilitated by acidic cations. Nat. Catal. 7, 1000–1009 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Singh, A. et al. Molecular electrochemical catalysis of CO-to-formaldehyde conversion with a cobalt complex. J. Am. Chem. Soc. 146, 22129–22133 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutchison, P. et al. Proton-coupled electron transfer mechanisms for CO2 reduction to methanol catalyzed by surface-immobilized cobalt phthalocyanine. J. Am. Chem. Soc. 146, 20230–20240 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erick Huang, J. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article 

    Google Scholar
     

  • Ma, Z. et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 13, 7596 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Monteiro, M. C. O. et al. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 144, 1589–1602 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021).

    Article 

    Google Scholar
     

  • Sun, M., Cheng, J. & Yamauchi, M. Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction. Nat. Commun. 15, 491 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, Z., Hu, X. & Feng, X. Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 6, 1694–1702 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Feng, S. et al. Stabilizing *CO2 intermediates at the acidic interface using molecularly dispersed cobalt phthalocyanine as catalysts for CO2 reduction. Angew. Chem. Int. Ed. 136, e202317942 (2024).

    Article 

    Google Scholar
     

  • Fan, M. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal. 6, 763–772 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, G. et al. Backbone engineering of polymeric catalysts for high-performance CO2 reduction in bipolar membrane zero-gap electrolyzer. Angew. Chem. Int. Ed. 63, e202400414 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. A covalent molecular design enabling efficient CO2 reduction in strong acids. Nat. Synth. 3, 1231–1242 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Song, Y. et al. Atomically thin, ionic-covalent organic nanosheets for stable, high performance carbon dioxide electroreduction. Adv. Mater. 34, 2110496 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Song, Y. et al. Ultrathin, cationic covalent organic nanosheets for enhanced CO2 electroreduction to methanol. Adv. Mater. 36, 2310037 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y., Delmo, E. P. & Shao, M. The electrode/electrolyte interface study during the electrochemical CO2 reduction in acidic electrolytes. Angew. Chem. Int. Ed. 64, e202415894 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Bernasconi, F. et al. Operando observation of (bi)carbonate precipitation during electrochemical CO2 reduction in strongly acidic electrolytes. ACS Catal. 14, 8232–8237 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Su, Y. et al. Exploring the impact of Nafion modifier on electrocatalytic CO2 reduction over Cu catalyst. J. Energy Chem. 88, 543–551 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Cation-dependent interfacial structures and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397–4411 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Strong hydrogen-bonded interfacial water inhibiting hydrogen evolution kinetics to promote electrochemical CO2 reduction to C2+. ACS Catal. 14, 3457–3465 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ohlin, C. A., Dyson, P. J. & Laurenczy, G. Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chem. Commun. 4, 1070–1071 (2004).

    Article 

    Google Scholar
     

  • Yao, Y. et al. A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights. Nat. Commun. 15, 1257 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S., Jiang, B., Cai, W., Bin & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H., Zhu, J., Ren, X., Tong, Y. & Chen, P. Heterogeneous cobalt phthalocyanine/sulfur-modified hollow carbon sphere for boosting CO2 electroreduction and Zn-CO2 batteries. Adv. Funct. Mater. 34, 202312552 (2023).


    Google Scholar
     

  • Lyu, F. et al. Pre-activation of CO2 at cobalt phthalocyanine-Mg(OH)2 interface for enhanced turnover rate. Adv. Funct. Mater. 33, 2214609 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Have, I. C. T. et al. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat. Commun. 13, 324 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wohar, M. M. & Jagodzinski, P. W. Infrared spectra of H2CO, H213CO, D2CO, and D213CO and anomalous values in vibrational force fields. J. Mol. Spectrosc. 148, 13–19 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Monteiro, M. C. O., Jacobse, L. & Koper, M. T. M. Understanding the voltammetry of bulk CO electrooxidation in neutral media through combined SECM measurements. J. Phys. Chem. Lett. 11, 9708–9713 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watkins, N. B. et al. Hydrodynamics change Tafel slopes in electrochemical CO2 reduction on copper. ACS Energy Lett. 8, 2185–2192 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Latiff, N. M. et al. Carbon based copper(II) phthalocyanine catalysts for electrochemical CO2 reduction: effect of carbon support on electrocatalytic activity. Carbon 168, 245–253 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cundary, T. R. & Gordon, M. S. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article 

    Google Scholar
     

  • Rappe, A. K. & Goddard, W. A. III Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Nanomaterials Transformed by Engineering Shape, Not Chemistry

    January 25, 2026

    New catalyst makes plastic upcycling 10x more efficient than platinum

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026

    Gold nanoclusters – A promising atomically precise atomic aggregation-based drug and its biomedical applications

    January 22, 2026

    Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure

    January 21, 2026

    Mapping electron phases in nanotube arrays – Physics World

    January 20, 2026
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 202511 Views

    Hard-braking events as indicators of road segment crash risk

    January 14, 20269 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views
    Don't Miss

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Press Release Open Cosmos, the company building satellites to understand and connect the world, has…

    Achieving superior intent extraction through decomposition

    January 25, 2026

    How UX Research Reveals Hidden AI Orchestration Failures

    January 25, 2026

    ByteDance steps up its push into enterprise cloud services

    January 25, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Achieving superior intent extraction through decomposition

    January 25, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.