Close Menu
geekfence.comgeekfence.com
    What's Hot

    Designing trust & safety (T&S) in customer experience management (CXM): why T&S is becoming core to CXM operating model 

    January 24, 2026

    iPhone 18 Series Could Finally Bring Back Touch ID

    January 24, 2026

    The Visual Haystacks Benchmark! – The Berkeley Artificial Intelligence Research Blog

    January 24, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Design and applications of synthetic biomolecular condensates
    Nanotechnology

    Design and applications of synthetic biomolecular condensates

    AdminBy AdminJanuary 3, 2026No Comments23 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Design and applications of synthetic biomolecular condensates
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article 

    Google Scholar
     

  • Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat. Commun. 14, 5527 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kar, M. et al. Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proc. Natl Acad. Sci. USA 119, e2202222119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J., Spruijt, E., Miserez, A. & Langer, R. Peptide-based liquid droplets as emerging delivery vehicles. Nat. Rev. Mater. 8, 139–141 (2023).

    Article 

    Google Scholar
     

  • Lu, T., Hu, X., van Haren, M. H. I., Spruijt, E. & Huck, W. T. S. Structure–property relationships governing membrane-penetrating behaviour of complex coacervates. Small 19, e2303138 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat. Chem. 14, 274–283 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Redox-responsive phase-separating peptide as a universal delivery vehicle for CRISPR/Cas9 genome editing machinery. ACS Nano 17, 16597–16606 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Shebanova, A. et al. Cellular uptake of phase-separating peptide coacervates. Adv. Sci. 11, e2402652 (2024).

    Article 

    Google Scholar
     

  • Sun, Y. et al. Phase-separating peptide coacervates with programmable material properties for universal intracellular delivery of macromolecules. Nat. Commun. 15, 10094 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbas, M., Lipiński, W. P., Nakashima, K. K., Huck, W. T. S. & Spruijt, E. A short peptide synthon for liquid–liquid phase separation. Nat. Chem. 13, 1046–1054 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nichols, M. K. et al. Fabrication of micropatterned dipeptide hydrogels by acoustic trapping of stimulus-responsive coacervate droplets. Small 14, e1800739 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Capasso Palmiero, U. et al. Programmable zwitterionic droplets as biomolecular sorters and model of membraneless organelles. Adv. Mater. 34, e2104837 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Baruch Leshem, A. et al. Biomolecular condensates formed by designer minimalistic peptides. Nat. Commun. 14, 421 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakashima, K. K., Vibhute, M. A. & Spruijt, E. Biomolecular chemistry in liquid phase separated compartments. Front. Mol. Biosci. 6, 21 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, Y., You, L. & Chilkoti, A. Engineering synthetic biomolecular condensates. Nat. Rev. Bioeng. 1, 466–480 (2023).

  • Lim, S. & Clark, D. S. Phase-separated biomolecular condensates for biocatalysis. Trends Biotechnol. 42, 496–509 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chatterjee, A., Reja, A., Pal, S. & Das, D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem. Soc. Rev. 51, 3047–3070 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Donau, C. et al. Active coacervate droplets as a model for membraneless organelles and protocells. Nat. Commun. 11, 5167 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W., Lupfer, C., Samanta, A., Sarkar, A. & Walther, A. Switchable hydrophobic pockets in DNA protocells enhance chemical conversion. J. Am. Chem. Soc. 145, 7090–7094 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Construction of coacervate-in-coacervate multi-compartment protocells for spatial organization of enzymatic reactions. Chem. Sci. 11, 8617–8625 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 12, 1165–1173 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Smokers, I. B. A., Visser, B. S., Slootbeek, A. D., Huck, W. T. S. & Spruijt, E. How droplets can accelerate reactions—coacervate protocells as catalytic microcompartments. Acc. Chem. Res. 57, 1885–1895 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reis, D. Q. P. et al. Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity. Nat. Commun. 15, 9368 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e14 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Akahoshi, Y. et al. Phase-separation propensity of non-ionic amino acids in peptide-based complex coacervation systems. Biomacromolecules 24, 704–713 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Shorter, J. Liquidizing FUS via prion-like domain phosphorylation. EMBO J. 36, 2925–2927 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker–spacer polypeptides. Nat. Commun. 12, 6620 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, V. H. et al. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. EMBO J. 40, e105001 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, E. W. et al. A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nat. Commun. 12, 4513 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Udono, H., Gong, J., Sato, Y. & Takinoue, M. DNA droplets: intelligent, dynamic fluid. Adv. Biol. 7, e2200180 (2023).

    Article 

    Google Scholar
     

  • Samanta, A., Baranda Pellejero, L., Masukawa, M. & Walther, A. DNA-empowered synthetic cells as minimalistic life forms. Nat. Rev. Chem. 8, 454–470 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Forman-Kay, J. D., Ditlev, J. A., Nosella, M. L. & Lee, H. O. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?. RNA 28, 36–47 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, Z. et al. Targeted RNA condensation in living cells via genetically encodable triplet repeat tags. Nucleic Acids Res. 51, 8337–8347 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vieregg, J. R. et al. Oligonucleotide–peptide complexes: phase control by hybridization. J. Am. Chem. Soc. 140, 1632–1638 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, N. et al. Photoswitchable phase separation and oligonucleotide trafficking in DNA coacervate microdroplets. Angew. Chem. Int. Ed. 58, 14594–14598 (2019).

    Article 

    Google Scholar
     

  • Schoenmakers, L. L. J. et al. In vitro transcription–translation in an artificial biomolecular condensate. ACS Synth. Biol. 12, 2004–2014 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T. & Spruijt, E. Multiphase complex coacervate droplets. J. Am. Chem. Soc. 142, 2905–2914 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Sato, Y., Sakamoto, T. & Takinoue, M. Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets. Sci. Adv. 6, eaba3471 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article 

    Google Scholar
     

  • Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidenreich, M. et al. Designer protein assemblies with tunable phase diagrams in living cells. Nat. Chem. Biol. 16, 939–945 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yeong, V., Werth, E. G., Brown, L. M. & Obermeyer, A. C. Formation of biomolecular condensates in bacteria by tuning protein electrostatics. ACS Cent. Sci. 6, 2301–2310 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. et al. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions. Nat. Commun. 15, 3216 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapelner, R. A. & Obermeyer, A. C. Ionic polypeptide tags for protein phase separation. Chem. Sci. 10, 2700–2707 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faltova, L., Küffner, A. M., Hondele, M., Weis, K. & Arosio, P. Multifunctional protein materials and microreactors using low complexity domains as molecular adhesives. ACS Nano 12, 9991–9999 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • McCall, P. M. et al. A label-free method for measuring the composition of multicomponent biomolecular condensates. Nat. Chem. (2025).

  • Hong, Y. et al. Label-free quantitative analysis of coacervates via 3D phase imaging. Adv. Opt. Mater. 9, 2100697 (2021).

    Article 

    Google Scholar
     

  • Küffner, A. M., et al. Acceleration of an enzymatic reaction in liquid phase separated compartments based on intrinsically disordered protein domains. ChemSystemsChem 2, e2000001 (2020).

    Article 

    Google Scholar
     

  • Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blocher McTigue, W. C. & Perry, S. L. Design rules for encapsulating proteins into complex coacervates. Soft Matter 15, 3089–3103 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Perry, S. L. et al. Chirality-selected phase behaviour in ionic polypeptide complexes. Nat. Commun. 6, 6052 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, W. et al. Tuning material states and functionalities of G-quadruplex-modulated RNA–peptide condensates. J. Am. Chem. Soc. 145, 2375–2385 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Love, C. et al. Reversible pH-responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angew. Chem. Int. Ed. 59, 5950–5957 (2020).

    Article 

    Google Scholar
     

  • Blocher McTigue, W. C. & Perry, S. L. Protein encapsulation using complex coacervates: what nature has to teach us. Small 16, e1907671 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Roberts, S., Dzuricky, M. & Chilkoti, A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett. 589, 2477–2486 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, H., Ibrahimova, V., Garanger, E. & Lecommandoux, S. Dynamic spatial formation and distribution of intrinsically disordered protein droplets in macromolecularly crowded protocells. Angew. Chem. Int. Ed. 59, 11028–11036 (2020).

    Article 

    Google Scholar
     

  • Xiao, L. et al. An artificial phase-transitional underwater bioglue with robust and switchable adhesion performance. Angew. Chem. Int. Ed. 60, 12082–12089 (2021).

    Article 

    Google Scholar
     

  • Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renner-Rao, M. et al. Mussels fabricate porous glues via multiphase liquid–liquid phase separation of multiprotein condensates. ACS Nano 16, 20877–20890 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Deepankumar, K. et al. Liquid–liquid phase separation of the green mussel adhesive protein Pvfp-5 is regulated by the post-translated Dopa amino acid. Adv. Mater. 34, e2103828 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jehle, F. et al. Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases. Nat. Commun. 11, 862 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibáñez-Fonseca, A. et al. Influence of the thermodynamic and kinetic control of self-assembly on the microstructure evolution of silk-elastin-like recombinamer hydrogels. Small 16, e2001244 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Roberts, S. et al. Complex microparticle architectures from stimuli-responsive intrinsically disordered proteins. Nat. Commun. 11, 1342 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, S. et al. Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat. Mater. 17, 1154–1163 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramšak, M. et al. Programmable de novo designed coiled coil-mediated phase separation in mammalian cells. Nat. Commun. 14, 7973 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabryelczyk, B. et al. Hydrogen bond guidance and aromatic stacking drive liquid–liquid phase separation of intrinsically disordered histidine-rich peptides. Nat. Commun. 10, 5465 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sementa, D. et al. Sequence-tunable phase behavior and intrinsic fluorescence in dynamically interacting peptides. Angew. Chem. Int. Ed. 62, e202311479 (2023).

    Article 

    Google Scholar
     

  • Aumiller, W. M. & Keating, C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ukmar-Godec, T. et al. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 10, 2909 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katzir, I., Haimov, E. & Lampel, A. Tuning the dynamics of viral-factories-inspired compartments formed by peptide–RNA liquid–liquid phase separation. Adv. Mater. 34, e2206371 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, A., et al. Tractable molecular adaptation patterns in a designed complex peptide system. Chem 8, 1894–1905 (2022).

    Article 

    Google Scholar
     

  • Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. 56, 11354–11359 (2017).

    Article 

    Google Scholar
     

  • Netzer, A., Baruch Leshem, A., Veretnik, S., Edelstein, I. & Lampel, A. Regulation of peptide liquid–liquid phase separation by aromatic amino acid composition. Small 20, e2401665 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Adler-Abramovich, L. & Gazit, E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev. 43, 6881–6893 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Levin, A., et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lampel, A. Biology-inspired supramolecular peptide systems. Chem 6, 1222–1236 (2020).

    Article 

    Google Scholar
     

  • Saha, B., Chatterjee, A., Reja, A. & Das, D. Condensates of short peptides and ATP for the temporal regulation of cytochrome c activity. Chem. Commun. 55, 14194–14197 (2019).

    Article 

    Google Scholar
     

  • Zhou, L. et al. Multiphasic condensates formed with mono-component of tetrapeptides via phase separation. Nat. Commun. 16, 2706 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna Kumar, R., Harniman, R. L., Patil, A. J. & Mann, S. Self-transformation and structural reconfiguration in coacervate-based protocells. Chem. Sci. 7, 5879–5887 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y. et al. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nat. Nanotechnol. 15, 841–847 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, C. et al. Nucleation and growth of amino acid and peptide supramolecular polymers through liquid–liquid phase separation. Angew. Chem. Int. Ed. 58, 18116–18123 (2019).

    Article 

    Google Scholar
     

  • Kubota, R., Torigoe, S. & Hamachi, I. Temporal stimulus patterns drive differentiation of a synthetic dipeptide-based coacervate. J. Am. Chem. Soc. 144, 15155–15164 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, S. et al. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis. Nat. Commun. 15, 39 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, S. et al. Binary peptide coacervates as an active model for biomolecular condensates. Nat. Commun. 16, 2407 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shakya, A. & King, J. T. DNA local-flexibility-dependent assembly of phase-separated liquid droplets. Biophys. J. 115, 1840–1847 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pesce, D., Wu, Y., Kolbe, A., Weil, T. & Herrmann, A. Enhancing cellular uptake of GFP via unfolded supercharged protein tags. Biomaterials 34, 4360–4367 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Osmotic-induced reconfiguration and activation in membranized coacervate-based protocells. J. Am. Chem. Soc. 145, 10396–10403 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lallemang, M. et al. Hierarchical mechanical transduction of precision-engineered DNA hydrogels with sacrificial bonds. ACS Appl. Mater. Interfaces 15, 59714–59721 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Biffi, S. et al. Phase behavior and critical activated dynamics of limited-valence DNA nanostars. Proc. Natl Acad. Sci. USA 110, 15633–15637 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Do, S., Lee, C., Lee, T., Kim, D.-N. & Shin, Y. Engineering DNA-based synthetic condensates with programmable material properties, compositions, and functionalities. Sci. Adv. 8, eabj1771 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Q.-H., Cao, F.-H., Luo, Z.-H., Huck, W. T. S. & Deng, N.-N. Photoswitchable molecular communication between programmable DNA-based artificial membraneless organelles. Angew. Chem. Int. Ed. 61, e202117500 (2022).

    Article 

    Google Scholar
     

  • Deng, J. & Walther, A. Programmable and chemically fueled DNA coacervates by transient liquid–liquid phase separation. Chem 6, 3329–3343 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon, B.-J. et al. Salt-dependent properties of a coacervate-like, self-assembled DNA liquid. Soft Matter 14, 7009–7015 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, W., Samanta, A., Deng, J., Akintayo, C. O. & Walther, A. Mechanistic insights into the phase separation behavior and pathway-directed information exchange in all-DNA droplets. Angew. Chem. Int. Ed. 61, e202208951 (2022).

    Article 

    Google Scholar
     

  • Jeon, B.-J., Nguyen, D. T. & Saleh, O. A. Sequence-controlled adhesion and microemulsification in a two-phase system of DNA liquid droplets. J. Phys. Chem. B 124, 8888–8895 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Leathers, A. et al. Reaction–diffusion patterning of DNA-based artificial cells. J. Am. Chem. Soc. 144, 17468–17476 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, S., Osmanovic, D., Dizani, M., Klocke, M. A. & Franco, E. Dynamic control of DNA condensation. Nat. Commun. 15, 1915 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maruyama, T., Gong, J. & Takinoue, M. Temporally controlled multistep division of DNA droplets for dynamic artificial cells. Nat. Commun. 15, 7397 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fabrini, G., Minard, A., Brady, R. A., Di Antonio, M. & Di Michele, L. Cation-responsive and photocleavable hydrogels from noncanonical amphiphilic DNA nanostructures. Nano Lett. 22, 602–611 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, J., Tsumura, N., Sato, Y. & Takinoue, M. Computational DNA droplets recognizing miRNA sequence inputs based on liquid–liquid phase separation. Adv. Funct. Mater. 32, 2202322 (2022).

  • Stewart, J. M. et al. Modular RNA motifs for orthogonal phase separated compartments. Nat. Commun. 15, 6244 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadsworth, G. M. et al. RNAs undergo phase transitions with lower critical solution temperatures. Nat. Chem. 15, 1693–1704 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, H. et al. Spatial engineering of E. coli with addressable phase-separated RNAs. Cell 185, 3823–3837.e23 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Fabrini, G. et al. Co-transcriptional production of programmable RNA condensates and synthetic organelles. Nat. Nanotechnol. 19, 1665–1673 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douliez, J.-P. et al. Catanionic coacervate droplets as a surfactant-based membrane-free protocell model. Angew. Chem. Int. Ed. 56, 13689–13693 (2017).

    Article 

    Google Scholar
     

  • Schuster, B. S. et al. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat. Commun. 9, 2985 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, R., Berman, N. & Lampel, A. Coacervates as enzymatic microreactors. Chem. Soc. Rev. 54, 4183–4199 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capasso Palmiero, U., Küffner, A. M., Krumeich, F., Faltova, L. & Arosio, P. Adaptive chemoenzymatic microreactors composed of inorganic nanoparticles and bioinspired intrinsically disordered proteins. Angew. Chem. Int. Ed. 59, 8138–8142 (2020).

    Article 

    Google Scholar
     

  • Guan, M. et al. Incorporation and assembly of a light-emitting enzymatic reaction into model protein condensates. Biochemistry 60, 3137–3151 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sang, D. et al. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. Mol. Cell 82, 3693–3711.e10 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mason, A. F., Buddingh’, B. C., Williams, D. S. & van Hest, J. C. M. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J. Am. Chem. Soc. 139, 17309–17312 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakashima, K. K., van Haren, M. H. I., André, A. A. M., Robu, I. & Spruijt, E. Active coacervate droplets are protocells that grow and resist Ostwald ripening. Nat. Commun. 12, 3819 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beneyton, T., Love, C., Girault, M., Tang, T. -Y. D. & Baret, J. High-throughput synthesis and screening of functional coacervates using microfluidics. ChemSystemsChem 2, e2000022 (2020).

  • Lim, Z. W., Ping, Y. & Miserez, A. Glucose-responsive peptide coacervates with high encapsulation efficiency for controlled release of insulin. Bioconjugate Chem. 29, 2176–2180 (2018).

    Article 

    Google Scholar
     

  • Abbas, M., Law, J. O., Grellscheid, S. N., Huck, W. T. S. & Spruijt, E. Peptide-based coacervate-core vesicles with semipermeable membranes. Adv. Mater. 34, e2202913 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobs, M. I., Jira, E. R. & Schroeder, C. M. Understanding how coacervates drive reversible small molecule reactions to promote molecular complexity. Langmuir 37, 14323–14335 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wee, W. A., Sugiyama, H. & Park, S. Photoswitchable single-stranded DNA-peptide coacervate formation as a dynamic system for reaction control. iScience 24, 103455 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smokers, I. B. A., van Haren, M. H. I., Lu, T. & Spruijt, E. Complex coacervation and compartmentalized conversion of prebiotically relevant metabolites. ChemSystemsChem 4, e202200004 (2022).

  • Wang, J., Abbas, M., Wang, J. & Spruijt, E. Selective amide bond formation in redox-active coacervate protocells. Nat. Commun. 14, 8492 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu, W. et al. Superstructural ordering in self-sorting coacervate-based protocell networks. Nat. Chem. 16, 158–167 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, E. & Lu, Y. Compartmentalizing cell-free systems: toward creating life-like artificial cells and beyond. ACS Synth. Biol. 9, 2881–2901 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Z., Beneyton, T., Baret, J.-C. & Martin, N. Coacervate droplets for synthetic cells. Small Methods 7, e2300496 (2023).

  • Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, T. Y. D., van Swaay, D., deMello, A., Anderson, J. L. R. & Mann, S. In vitro gene expression within membrane-free coacervate protocells. Chem. Commun. 51, 11429–11432 (2015).

    Article 

    Google Scholar
     

  • Meyer, M. O., Yamagami, R., Choi, S., Keating, C. D. & Bevilacqua, P. C. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. Preprint at BioRxiv (2023).

  • Li, J. et al. Phase separation of DNA-encoded artificial cells boosts signal amplification for biosensing. Angew. Chem. 62, e202306691 (2023).

  • Yang, S. et al. AIEgen-conjugated phase-separating peptides illuminate intracellular RNA through coacervation-induced emission. ACS Nano 17, 8195–8203 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gaash, D. et al. Modulating the optical properties of carbon dots by peptide condensates. Chem. Commun. 59, 12298–12301 (2023).

    Article 

    Google Scholar
     

  • Netzer, A., Katzir, I., Baruch Leshem, A., Weitman, M. & Lampel, A. Emergent properties of melanin-inspired peptide/RNA condensates. Proc. Natl Acad. Sci. USA 120, e2310569120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, D. S., Waite, J. H. & Tirrell, M. Promotion of osteoblast proliferation on complex coacervation-based hyaluronic acid–recombinant mussel adhesive protein coatings on titanium. Biomaterials 31, 1080–1084 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Self-immobilization of coacervate droplets by enzyme-mediated hydrogelation. Chem. Commun. 57, 5438–5441 (2021).

    Article 

    Google Scholar
     

  • Liu, Y., Wang, K. & Zhou, P. Microscopic structure, viscoelastic behaviour and 3D printing potential of milk protein concentrate–hydrocolloid complex coacervates. Int. J. Food Sci. Technol. 57, 4422–4431 (2022).

    Article 

    Google Scholar
     

  • Kim, J.-M., Heo, T.-Y. & Choi, S.-H. Structure and relaxation dynamics for complex coacervate hydrogels formed by ABA triblock copolymers. Macromolecules 53, 9234–9243 (2020).

    Article 

    Google Scholar
     

  • Wu, B. et al. Chemical signal regulated injectable coacervate hydrogels. Chem. Sci. 14, 1512–1523 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Fabrication of channeled scaffolds through polyelectrolyte complex (PEC) printed sacrificial templates for tissue formation. Bioact. Mater. 17, 261–275 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoonkari, M. et al. Bioinspired processing: complex coacervates as versatile inks for 3D bioprinting. Adv. Mater. 35, e2210769 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rising, A. & Harrington, M. J. Biological materials processing: time-tested tricks for sustainable fiber fabrication. Chem. Rev. 123, 2155–2199 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Pinnaratip, R., Bhuiyan, M. S. A., Meyers, K., Rajachar, R. M. & Lee, B. P. Multifunctional biomedical adhesives. Adv. Healthc. Mater. 8, e1801568 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur, S., Weerasekare, G. M. & Stewart, R. J. Multiphase adhesive coacervates inspired by the sandcastle worm. ACS Appl. Mater. Interfaces 3, 941–944 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, W. et al. A mussel-derived one component adhesive coacervate. Acta Biomater. 10, 1663–1670 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, W. et al. An underwater surface-drying peptide inspired by a mussel adhesive protein. Adv. Funct. Mater. 26, 3496–3507 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, B. K. et al. High-performance mussel-inspired adhesives of reduced complexity. Nat. Commun. 6, 8663 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, J. et al. Genetically engineered polypeptide adhesive coacervates for surgical applications. Angew. Chem. Int. Ed. 60, 23687–23694 (2021).

    Article 

    Google Scholar
     

  • Ma, Q. et al. Cell-inspired all-aqueous microfluidics: from intracellular liquid–liquid phase separation toward advanced biomaterials. Adv. Sci. 7, 1903359 (2020).

    Article 

    Google Scholar
     

  • Arter, W. E. et al. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat. Commun. 13, 7845 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erkamp, N. A., Qi, R., Welsh, T. J. & Knowles, T. P. J. Microfluidics for multiscale studies of biomolecular condensates. Lab Chip 23, 9–24 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villois, A. et al. Droplet microfluidics for the label-free extraction of complete phase diagrams and kinetics of liquid–liquid phase separation in finite volumes. Small 18, e2202606 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Linsenmeier, M. et al. Dynamics of synthetic membraneless organelles in microfluidic droplets. Angew. Chem. Int. Ed. 58, 14489–14494 (2019).

    Article 

    Google Scholar
     

  • Zeng, M. et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174, 1172–1187.e16 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Quiroz, F. G. et al. Liquid–liquid phase separation drives skin barrier formation. Science 367, eaax9554 (2020).

  • Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Kriebisch, C. M. E. et al. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nat. Chem. 16, 1240–1249 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, H., Sakaguchi, Y., Suzuki, T., Yanagisawa, M. & Aida, T. Near-identical macromolecules spontaneously partition into concentric circles. Nature 636, 92–99 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Bergmann, A. M. et al. Liquid spherical shells are a non-equilibrium steady state of active droplets. Nat. Commun. 14, 6552 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boeynaems, S. et al. Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waite, J. H. Mussel adhesion—essential footwork. J. Exp. Biol. 220, 517–530 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T. et al. Endocytosis of coacervates into liposomes. J. Am. Chem. Soc. 144, 13451–13455 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    New catalyst makes plastic upcycling 10x more efficient than platinum

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026

    Gold nanoclusters – A promising atomically precise atomic aggregation-based drug and its biomedical applications

    January 22, 2026

    Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure

    January 21, 2026

    Mapping electron phases in nanotube arrays – Physics World

    January 20, 2026

    New SLAC Method Guides Better Cell Slice Preparation for Cryo-ET Imaging

    January 19, 2026
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 202511 Views

    Hard-braking events as indicators of road segment crash risk

    January 14, 20269 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views
    Don't Miss

    Designing trust & safety (T&S) in customer experience management (CXM): why T&S is becoming core to CXM operating model 

    January 24, 2026

    Customer Experience (CX) now sits at the intersection of Artificial Intelligence (AI)-enabled automation, identity and access journeys, AI-generated content…

    iPhone 18 Series Could Finally Bring Back Touch ID

    January 24, 2026

    The Visual Haystacks Benchmark! – The Berkeley Artificial Intelligence Research Blog

    January 24, 2026

    Data and Analytics Leaders Think They’re AI-Ready. They’re Probably Not. 

    January 24, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Designing trust & safety (T&S) in customer experience management (CXM): why T&S is becoming core to CXM operating model 

    January 24, 2026

    iPhone 18 Series Could Finally Bring Back Touch ID

    January 24, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.