Close Menu
geekfence.comgeekfence.com
    What's Hot

    Customer experience management (CXM) predictions for 2026: How customers, enterprises, technology, and the provider landscape will evolve 

    December 28, 2025

    What to Know About the Cloud and Data Centers in 2026

    December 28, 2025

    Why Enterprise AI Scale Stalls

    December 28, 2025
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Nanoscopic strain evolution in single-crystal battery positive electrodes
    Nanotechnology

    Nanoscopic strain evolution in single-crystal battery positive electrodes

    AdminBy AdminDecember 20, 2025No Comments10 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Nanoscopic strain evolution in single-crystal battery positive electrodes
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article 

    Google Scholar
     

  • Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Goodenough, J. B. & Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T. et al. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat. Commun. 12, 6024 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S., Su, L., Mesnier, A., Cui, Z. & Manthiram, A. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, G. L. et al. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv. Funct. Mater. 30, 2004748 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. N. et al. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat. Commun. 5, 5381 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mukhopadhyay, A. & Sheldon, B. W. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Stallard, J. C. et al. Mechanical properties of cathode materials for lithium-ion batteries. Joule 6, 984–1007 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, H.-H., Park, K.-J., Yoon, C. S. & Sun, Y.-K. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30, 1155–1163 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, W., Asl, H. Y., Xie, Q. & Manthiram, A. Collapse of LiNi(1–x–y)Co(x)Mn(y)O(2) lattice at deep charge irrespective of nickel content in lithium-ion batteries. J. Am. Chem. Soc. 141, 5097–5101 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X. & Ceder, G. Zero-strain cathode materials for Li-ion batteries. Joule 6, 2683–2685 (2022).

    Article 

    Google Scholar
     

  • Xu, G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Ni-rich LiNi0·8Co0·1Mn0·1O2 coated with Li-ion conductive Li3PO4 as competitive cathodes for high-energy-density lithium ion batteries. Electrochim. Acta 340, 135871 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yu, H. et al. Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries. Nat. Commun. 12, 4564 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goonetilleke, D. et al. Alleviating anisotropic volume variation at comparable Li utilization during cycling of Ni-rich, Co-free layered oxide cathode materials. J. Phys. Chem. C 126, 16952–16964 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?. J. Electrochem. Soc. 166, A429–A439 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).

    Article 

    Google Scholar
     

  • Aishova, A., Park, G. T., Yoon, C. S. & Sun, Y. K. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode. Adv. Energy Mater. 10, 1903179 (2019).

    Article 

    Google Scholar
     

  • Sun, Y. K., Lee, D. J., Lee, Y. J., Chen, Z. & Myung, S. T. Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 11434–11440 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, G.-T. et al. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat. Energy 7, 946–954 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, W., Lee, S. & Manthiram, A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mu, L. et al. Dopant distribution in Co-free high-energy layered cathode materials. Chem. Mater. 31, 9769–9776 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qian, G. et al. Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture. Energy Storage Mater. 27, 140–149 (2020).

    Article 

    Google Scholar
     

  • Langdon, J. & Manthiram, A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 37, 143–160 (2021).

    Article 

    Google Scholar
     

  • Shi, J.-L. et al. Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries. Natl Sci. Rev. 10, nwac226 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moiseev, I. A. et al. Single crystal Ni-rich NMC cathode materials for lithium-ion batteries with ultra-high volumetric energy density. Energy Adv. 1, 677–681 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ge, M. et al. Kinetic limitations in single-crystal high-nickel cathodes. Angew. Chem. Int. Ed. 60, 17350–17355 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zou, Y. G. et al. Mitigating the kinetic hindrance of single-crystalline Ni-rich cathode via surface gradient penetration of tantalum. Angew. Chem. Int. Ed. 60, 26535–26539 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pandurangi, S. S., Hall, D. S., Grey, C. P., Deshpande, V. S. & Fleck, N. A. Chemo-mechanical analysis of lithiation/delithiation of Ni-rich single crystals. J. Electrochem. Soc. 170, 050531 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Understanding the synthesis kinetics of single-crystal Co-free Ni-rich cathodes. Angew. Chem. Int. Ed. 62, e202302547 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fan, X. et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 12, 5320 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, J. et al. The origin of high-voltage stability in single-crystal layered Ni-rich cathode materials. Angew. Chem. Int. Ed. 61, e202207225 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K.-E. et al. Enhancing high-voltage structural stability of single-crystalline Ni-rich LiNi0.9Mn0.05Co0.05O2 cathode material by ultrathin Li-rich oxide layer for lithium-ion batteries. J. Power Sources 601, 234300 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heenan, T. M. et al. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Energy Mater. 10, 2002655 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas, Solutions, and MATLAB Toolboxes (Academic Press, 2005).

  • Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, J. et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Acc. Chem. Res. 52, 2201–2209 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Origin of phase separation in Ni-rich layered oxide cathode materials during electrochemical cycling. Chem. Mater. 35, 8857–8871 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jousseaume, T., Colin, J.-F., Chandesris, M., Lyonnard, S. & Tardif, S. Strain and collapse during lithiation of layered transition metal oxides: a unified picture. Energy Environ. Sci. 17, 2753–2764 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ogley, M. J. et al. Metal–ligand redox in layered oxide cathodes for Li-ion batteries. Joule 9, 101775 (2025).

  • Li, H., Zhang, N., Li, J. & Dahn, J. R. Updating the structure and electrochemistry of LixNiO2 for 0 ≤ x ≤ 1. J. Electrochem. Soc. 165, A2985–A2993 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Olszewski, W. et al. The role of the local structural properties in the electrochemical characteristics of Na1–xFe1–yNiyO2 cathodes. Mater. Today Energy 40, 101519 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mao, Y. et al. High-voltage charging-induced strain, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode material. Adv. Funct. Mater. 29, 1900247 (2019).

    Article 

    Google Scholar
     

  • Ryu, H.-H. et al. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 6, 2726–2734 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, H. et al. Restraining the escape of lattice oxygen enables superior cyclic performance towards high-voltage Ni-rich cathodes. Natl Sci. Rev. 10, nwac166 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balasubramanian, M., Sun, X., Yang, X. & McBreen, J. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries. J. Power Sources 92, 1–8 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Usoltsev, O. et al. Operando multi-edge XAS to reveal the effect of Co in Li-and Mn-rich NMC Li-ion cathodes. Mater. Today Energy 50, 101853 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Sun, H.-H. & Manthiram, A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem. Mater. 29, 8486–8493 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Qian, D., Xu, B., Chi, M. & Meng, Y. S. Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 16, 14665–14668 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scurtu, R.-G. et al. From small batteries to big claims. Nat. Nanotechnol. 20, 970–976 (2025).

  • Chien, Y.-C. et al. Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method. Nat. Commun. 14, 2289 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schied, T. et al. Determining the diffusion coefficient of lithium insertion cathodes from GITT measurements: theoretical analysis for low temperatures. ChemPhysChem 22, 885–893 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Tallman, K. R. et al. Nickel-rich nickel manganese cobalt (NMC622) cathode lithiation mechanism and extended cycling effects using operando X-ray absorption spectroscopy. J. Phys. Chem. C 125, 58–73 (2020).

    Article 

    Google Scholar
     

  • Chen, C.-H. et al. Operando X-ray diffraction and X-ray absorption studies of the structural transformation upon cycling excess Li layered oxide Li[Li1/18Co1/6Ni1/3Mn4/9]O2 in Li ion batteries. J. Mater. Chem. A 3, 8613–8626 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Newville, M. Fundamentals of XAFS. Rev. Mineral. Geochem. 78, 33–74 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Williamson, G. & Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1, 22–31 (1953).

    Article 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chahine, G. A. et al. Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping. J. Appl. Crystallogr. 47, 762–769 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, X., Xu, Z., Lin, F. & Lee, W.-K. TXM-Sandbox: an open-source software for transmission X-ray microscopy data analysis. J. Synchrotron Radiat. 29, 266–275 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, X., Xu, Z., Hou, D., Yang, Z. & Lin, F. Rigid registration algorithm based on the minimization of the total variation of the difference map. J. Synchrotron Radiat. 29, 1085–1094 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    A self-delivering antimicrobial peptide hydrogel for treatment of staphylococcal infections in orthopedic implants

    December 28, 2025

    A biohybrid chiral hydrogel enhances preclinical postoperative glioblastoma therapy by multi-pronged inhibition of tumour stemness

    December 27, 2025

    The Graphene Investment Opportunity Report 2025

    December 26, 2025

    How does quantum entanglement move between different particles? – Physics World

    December 25, 2025

    Safer, Cheaper Method for Creating Futuristic MXenes

    December 24, 2025

    This simulation reveals what really happens near black holes

    December 23, 2025
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 20258 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views

    Here’s the latest company planning for gene-edited babies

    November 2, 20257 Views
    Don't Miss

    Customer experience management (CXM) predictions for 2026: How customers, enterprises, technology, and the provider landscape will evolve 

    December 28, 2025

    After laying out our bold CXM predictions for 2025 and then assessing how those bets played out…

    What to Know About the Cloud and Data Centers in 2026

    December 28, 2025

    Why Enterprise AI Scale Stalls

    December 28, 2025

    New serverless customization in Amazon SageMaker AI accelerates model fine-tuning

    December 28, 2025
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Customer experience management (CXM) predictions for 2026: How customers, enterprises, technology, and the provider landscape will evolve 

    December 28, 2025

    What to Know About the Cloud and Data Centers in 2026

    December 28, 2025

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.