Close Menu
geekfence.comgeekfence.com
    What's Hot

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Achieving superior intent extraction through decomposition

    January 25, 2026

    How UX Research Reveals Hidden AI Orchestration Failures

    January 25, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Interface Engineered V2O5-based Flexible Memristors towards High-Performance Brain-Inspired Neuromorphic Computing
    Nanotechnology

    Interface Engineered V2O5-based Flexible Memristors towards High-Performance Brain-Inspired Neuromorphic Computing

    AdminBy AdminDecember 15, 2025No Comments2 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Interface Engineered V2O5-based Flexible Memristors towards High-Performance Brain-Inspired Neuromorphic Computing
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Bio-inspired neuromorphic computing offers a revolutionary approach by replicating brain-like functionalities in next-generation electronics. This study presents two flexible resistive memory devices fabricated using DC magnetron sputtering, D1(Nb/V2O5/Ni) and D2(Nb/NbOx/V2O5/Ni). Device D1 exhibits abrupt SET and gradual RESET switching, while D2 demonstrates fully gradual resistive switching (GRS), highly desirable for analog synaptic behavior. Mechanistically, D1 is primarily governed by oxygen vacancies, whereas D2 benefits from the synergistic interplay between oxygen vacancies and interfacial NbOx/NiO layers, confirmed by XPS depth profiling. These interfacial layers significantly enhance D2’s GRS performance and synaptic fidelity. Both devices exhibit temperature-dependent control of oxygen vacancies, which dynamically increases the memory window, lowering the ON/OFF ratio. Multilevel resistive states are generated in both devices by controlling the compliance current, with D2 outperforming D1 by exhibiting a higher memory window (~552) and exceptional endurance beyond 7000 cycles. Moreover, both devices effectively replicate biological synaptic functions such as LTP and LTD. However, D2 also mimics complex neural dynamics, including spike time-dependent and rate-dependent plasticity. Simulation of D2’s artificial neural network demonstrates ~86.75% excellent accuracy level, attributed to its linear, symmetric analog weight modulation and multiple conductance states. These results highlight the potential of V2O5-based devices for high-performance neuromorphic computing.


    You have access to this article


    Interface Engineered V2O5-based Flexible Memristors towards High-Performance Brain-Inspired Neuromorphic Computing
    Please wait while we load your content…


    Something went wrong. Try again?



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Nanomaterials Transformed by Engineering Shape, Not Chemistry

    January 25, 2026

    New catalyst makes plastic upcycling 10x more efficient than platinum

    January 24, 2026

    Surface-enhanced thermal dissipation in 3D vertical resistive memory arrays with top selector transistors

    January 23, 2026

    Gold nanoclusters – A promising atomically precise atomic aggregation-based drug and its biomedical applications

    January 22, 2026

    Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure

    January 21, 2026

    Mapping electron phases in nanotube arrays – Physics World

    January 20, 2026
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 202511 Views

    Hard-braking events as indicators of road segment crash risk

    January 14, 20269 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views
    Don't Miss

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Press Release Open Cosmos, the company building satellites to understand and connect the world, has…

    Achieving superior intent extraction through decomposition

    January 25, 2026

    How UX Research Reveals Hidden AI Orchestration Failures

    January 25, 2026

    ByteDance steps up its push into enterprise cloud services

    January 25, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Open Cosmos launches first satellites for new LEO constellation

    January 25, 2026

    Achieving superior intent extraction through decomposition

    January 25, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.