Close Menu
geekfence.comgeekfence.com
    What's Hot

    Customer experience management (CXM) predictions for 2026: How customers, enterprises, technology, and the provider landscape will evolve 

    December 28, 2025

    What to Know About the Cloud and Data Centers in 2026

    December 28, 2025

    Why Enterprise AI Scale Stalls

    December 28, 2025
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»All-optical modulation with single photons using an electron avalanche
    Nanotechnology

    All-optical modulation with single photons using an electron avalanche

    AdminBy AdminNovember 29, 2025No Comments7 Mins Read3 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    All-optical modulation with single photons using an electron avalanche
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nat. Photon. 8, 356–363 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).

    Article 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aslam, N. et al. Quantum sensors for biomedical applications. Nat. Rev. Phys. 5, 157–169 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walmsley, I. A. Quantum optics: science and technology in a new light. Science 348, 525–530 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon 8, 685–694 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Reshef, O., De Leon, I., Alam, M. Z. & Boyd, R. W. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 4, 535–551 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nat. Rev. Mater. 4, 742–760 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yoshiki, W. & Tanabe, T. All-optical switching using Kerr effect in a silica toroid microcavity. Opt. Express 22, 24332 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raja, A. S., et al. Ultrafast optical circuit switching for data centers using integrated soliton microcombs. Nat. Commun. 12, 5867 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida, V. R. et al. All-optical switch on a silicon chip. OSA Trends Opt. Photonics Ser. 96A, 1179–1181 (2004).


    Google Scholar
     

  • Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dayan, B. et al. Regulated by one atom. Science 319, 22–25 (2008).

    Article 

    Google Scholar
     

  • Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).

    Article 

    Google Scholar
     

  • Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012).

    Article 

    Google Scholar
     

  • Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun. 6, 7031 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    Article 

    Google Scholar
     

  • Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Jellison, G. E. & Burke, H. H. The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths. J. Appl. Phys. 60, 841–843 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. H. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 9, 561–658 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Kindereit, U. Fundamentals and future applications of laser voltage probing. In Proc. IEEE International Reliability Physics Symposium (ed. Kaplar, R.) 3F.1.1–3F.1.11 (IEEE, 2014).

  • Ganesh, U. Laser voltage probing (LVP) – Its value and the race against scaling. Microelectron. Reliab. 64, 294–298 (2016).

    Article 

    Google Scholar
     

  • Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stringer, L. F. Thyristor DC systems for non-ferrous hot line. IEEE Ind. Static Power Control 6, 10 (1965).


    Google Scholar
     

  • McKay, K. G. Avalanche breakdown in silicon. Phys. Rev. 94, 877–884 (1954).

    Article 
    CAS 

    Google Scholar
     

  • Haitz, R. H., Goetzberger, A., Scarlett, R. M. & Shockley, W. Avalanche effects in silicon p-n junctions. J. Appl. Phys. 34, 983 (1963).

    Article 

    Google Scholar
     

  • Capasso, F. Physics of avalanche photodiodes. Semicond. Semimet. 22, 1–172 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Logan, R. A., Chynoweth, A. G. & Cohen, B. G. Avalanche breakdown in gallium arsenide p-n junctions. Phys. Rev. 128, 2518–2523 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Cova, S., Longoni, A. & Andreoni, A. Towards picosecond resolution with single-photon avalanche diodes. Rev. Sci. Instrum. 52, 408–412 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. & Lipson, M. Carrier-induced optical bistability in silicon ring resonators. Opt. Lett. 31, 341 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y. et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat. Commun. 13, 6362 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. Diffractive optical computing in free space. Nat. Commun. 15, 1525 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y., Yang, Y. & Sun, H.-B. Nonlinear meta-optics towards applications. PhotoniX 2, 3 (2021).

    Article 

    Google Scholar
     

  • Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 (2020).

    Article 

    Google Scholar
     

  • Sakaguchi, A. et al. Nonlinear feedforward enabling quantum computation. Nat. Commun. 14, 3817 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tutorial: high speed fiber modulator basics. AeroDiode (2025).

  • Cheng, Z. et al. On-chip silicon electro-optical modulator with ultra-high extinction ratio for fiber-optic distributed acoustic sensing. Nat. Commun. 14, 7409 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gardes, F. Y., Reed, G. T., Emerson, N. G. & Png, C. E. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express 13, 8845 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clerici, M. et al. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nat. Commun. 8, 15829 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. et al. High gain, low noise 1550 nm GaAsSb/AlGaAsSb avalanche photodiodes. Optica 10, 147 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bogdanov, S. I., Boltasseva, A. & Shalaev, V. M. Overcoming quantum decoherence with plasmonics. Science 364, 532–533 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dharanipathy, U. P., Minkov, M., Tonin, M., Savona, V. & Houdré, R. High-Q silicon photonic crystal cavity for enhanced optical nonlinearities. Appl. Phys. Lett. 105, 101101 (2014).

  • Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun. 13, 6281 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sychev, D. V. Supplementary files to ‘All-optical modulation with single photons using electron avalanche’. figshare (2025).



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    A self-delivering antimicrobial peptide hydrogel for treatment of staphylococcal infections in orthopedic implants

    December 28, 2025

    A biohybrid chiral hydrogel enhances preclinical postoperative glioblastoma therapy by multi-pronged inhibition of tumour stemness

    December 27, 2025

    The Graphene Investment Opportunity Report 2025

    December 26, 2025

    How does quantum entanglement move between different particles? – Physics World

    December 25, 2025

    Safer, Cheaper Method for Creating Futuristic MXenes

    December 24, 2025

    This simulation reveals what really happens near black holes

    December 23, 2025
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 20258 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views

    Here’s the latest company planning for gene-edited babies

    November 2, 20257 Views
    Don't Miss

    Customer experience management (CXM) predictions for 2026: How customers, enterprises, technology, and the provider landscape will evolve 

    December 28, 2025

    After laying out our bold CXM predictions for 2025 and then assessing how those bets played out…

    What to Know About the Cloud and Data Centers in 2026

    December 28, 2025

    Why Enterprise AI Scale Stalls

    December 28, 2025

    New serverless customization in Amazon SageMaker AI accelerates model fine-tuning

    December 28, 2025
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Customer experience management (CXM) predictions for 2026: How customers, enterprises, technology, and the provider landscape will evolve 

    December 28, 2025

    What to Know About the Cloud and Data Centers in 2026

    December 28, 2025

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.