Close Menu
geekfence.comgeekfence.com
    What's Hot

    Customer experience management (CXM) predictions for 2026: How customers, enterprises, technology, and the provider landscape will evolve 

    December 28, 2025

    What to Know About the Cloud and Data Centers in 2026

    December 28, 2025

    Why Enterprise AI Scale Stalls

    December 28, 2025
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Teaching machines to understand complexity – Physics World
    Nanotechnology

    Teaching machines to understand complexity – Physics World

    AdminBy AdminNovember 12, 2025No Comments3 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Teaching machines to understand complexity – Physics World
    Share
    Facebook Twitter LinkedIn Pinterest Email


    This research introduces a novel approach to uncovering structural variables in complex systems, reshaping how we model the unpredictable behaviour of the real world

    Connected puzzle pieces

    Connected puzzle pieces (Courtesy: iStock/Ilexx)

    Complex systems model real-world behaviour that is dynamic and often unpredictable. They are challenging to simulate because of nonlinearity, where small changes in conditions can lead to disproportionately large effects, many interacting variables, which make computational modelling cumbersome, and randomness, where outcomes are probabilistic. Machine learning is a powerful tool for understanding complex systems. It can be used to find hidden relationships in high-dimensional data and predict the future state of a system based on previous data.

    This research develops a novel machine learning approach for complex systems that allows the user to extract important information about collective variables in the system, referred to as inherent structural variables. The researchers used a type of machine learning tool called an autoencoder to examine snapshots of how atoms are arranged in a system at any moment (called instantaneous atomic configurations). Then, they matched each snapshot to a more stable version of that structure (an inherent structure), which represents the system’s underlying shape or pattern. The inherent structural variables enable the analysis of structural transitions and the computation of high-resolution free-energy landscapes. These are detailed maps that show how a system’s energy changes as its structure or configuration changes, helping researchers understand stability, transitions, and dynamics in complex systems.

    The model is versatile, and the authors demonstrate how it can be applied to metal nanoclusters and protein structures. In the case of Au147 nanoclusters (well-organised structures made up of 147 gold atoms), the inherent structural variables reveal three main types of stable structures that the gold nanocluster can adopt. These are called fcc (face-centred cubic), Dh (decahedral), and Ih (icosahedral). These structures represent different stable states that a nanocluster can switch between, and on the high-resolution free-energy landscape, they appear as valleys. Moving from one valley to another isn’t easy, there are narrow paths or barriers between them, known as kinetic bottlenecks.

    The researchers validated their machine learning model using Markov state models, which are mathematical tools that help analyse how a system moves between different states over time, and electron microscopy, which images atomic structures and can confirm that the predicted structures exist in the gold nanoclusters. The approach also captures non-equilibrium melting and freezing processes, offering insights into polymorph selection and metastable states. Scalability is demonstrated up to Au309 clusters.

    The generality of the method is further demonstrated by applying it to the bradykinin peptide, a completely different type of system, identifying distinct structural motifs and transitions. Applying the method to a biological molecule provides further evidence that the machine learning approach is a flexible, powerful technique for studying many kinds of complex systems. This work contributes to machine learning strategies, as well as experimental and theoretical studies of complex systems, with potential applications across liquids, glasses, colloids, and biomolecules.

    Do you want to learn more about this topic?

    Complex systems in the spotlight: next steps after the 2021 Nobel Prize in Physics by Ginestra Bianconi et al (2023)



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    A self-delivering antimicrobial peptide hydrogel for treatment of staphylococcal infections in orthopedic implants

    December 28, 2025

    A biohybrid chiral hydrogel enhances preclinical postoperative glioblastoma therapy by multi-pronged inhibition of tumour stemness

    December 27, 2025

    The Graphene Investment Opportunity Report 2025

    December 26, 2025

    How does quantum entanglement move between different particles? – Physics World

    December 25, 2025

    Safer, Cheaper Method for Creating Futuristic MXenes

    December 24, 2025

    This simulation reveals what really happens near black holes

    December 23, 2025
    Top Posts

    Understanding U-Net Architecture in Deep Learning

    November 25, 20258 Views

    Microsoft 365 Copilot now enables you to build apps and workflows

    October 29, 20258 Views

    Here’s the latest company planning for gene-edited babies

    November 2, 20257 Views
    Don't Miss

    Customer experience management (CXM) predictions for 2026: How customers, enterprises, technology, and the provider landscape will evolve 

    December 28, 2025

    After laying out our bold CXM predictions for 2025 and then assessing how those bets played out…

    What to Know About the Cloud and Data Centers in 2026

    December 28, 2025

    Why Enterprise AI Scale Stalls

    December 28, 2025

    New serverless customization in Amazon SageMaker AI accelerates model fine-tuning

    December 28, 2025
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    Customer experience management (CXM) predictions for 2026: How customers, enterprises, technology, and the provider landscape will evolve 

    December 28, 2025

    What to Know About the Cloud and Data Centers in 2026

    December 28, 2025

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2025 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.