Close Menu
geekfence.comgeekfence.com
    What's Hot

    SETU leads €400,000 EU health tech education project

    February 20, 2026

    Study: AI chatbots provide less-accurate information to vulnerable users | MIT News

    February 20, 2026

    Amazon EC2 Hpc8a Instances powered by 5th Gen AMD EPYC processors are now available

    February 20, 2026
    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    Facebook Instagram
    geekfence.comgeekfence.com
    • Home
    • UK Tech News
    • AI
    • Big Data
    • Cyber Security
      • Cloud Computing
      • iOS Development
    • IoT
    • Mobile
    • Software
      • Software Development
      • Software Engineering
    • Technology
      • Green Technology
      • Nanotechnology
    • Telecom
    geekfence.comgeekfence.com
    Home»Nanotechnology»Could Graphene Memristors Tackle AI’s Energy Use?
    Nanotechnology

    Could Graphene Memristors Tackle AI’s Energy Use?

    AdminBy AdminFebruary 19, 2026No Comments4 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Could Graphene Memristors Tackle AI’s Energy Use?
    Share
    Facebook Twitter LinkedIn Pinterest Email


    A new review in Nanoenergy Advances argues that graphene-family materials could help tackle one of artificial intelligence’s most pressing problems: energy use.

    Could Graphene Memristors Tackle AI’s Energy Use? Study: Graphene-Based Memristive and Photomemristive Nanosensors for Energy-Efficient Information Processing. Image Credit: AntiAthom/Shutterstock.com

    In the paper, Panin outlines how low-dimensional carbon-based materials, including graphene, graphene oxide, and diamane, are enabling energy-efficient processing of electrical and optical signals across a wide spectral range, from ultraviolet to infrared. 

    The work surveys how these materials support memristive and photomemristive nanosensors that merge sensing, memory, and computation into compact, low-power systems.

    Saving this for later? Download a PDF here.

    A large part of the current AI conversation is its energy use. Tesla’s DOJO processor, for example, performs 1.1 EFLOPs (∼10¹8 operations per second) while consuming 45 MW of power – comparable to a small power plant.

    Such figures highlight the cost of shuttling vast amounts of data between sensors, memory, and processors in conventional von Neumann architectures.

    Memristors may offer a different route. As non-volatile resistive switching devices, often described as the fourth fundamental circuit element, they store information in their resistance states.

    Crucially, they allow logic and memory to coexist in the same physical structure. That opens the door to in-memory and even in-sensor computing, where data can be processed at or near the point of detection rather than transferred across energy-intensive architectures.

    How Graphene Controls Resistance At Low Power

    The review details how memristive states in graphene/graphene oxide and bigraphene/diamane nanostructures can be tuned at bias voltages below 1 V. Switching is governed by changes in sp3-sp2 hybridization of carbon atoms, along with interface-mediated redox processes that allow multilevel, low-energy control of resistive states.

    Several fabrication strategies are discussed.

    “Direct electron-beam writing” enables the formation of reduced graphene oxide (EB-rGO)/graphene oxide heterostructures with well-controlled resistive switching. 

    Laser lithography is another option: Graphene oxide memristors fabricated at laser powers between 65 and 75 mW exhibit the highest resistance ratios. A lateral Pt/GO/rGO device produced via direct laser writing demonstrated ultralow power consumption of 200 nW while displaying synaptic-like behavior.

    Graphene oxide memristors have also been integrated into logic-in-memory circuits using MAGIC architecture. These devices implement Boolean operations (NOT, NOR, OR, AND, NAND) and exhibit unipolar resistive switching with on/off ratios exceeding 102. Their operation is linked to the reversible formation and rupture of nickel filaments.

    Unlike conventional CMOS logic, such non-volatile circuits can achieve zero static power consumption in standby mode.

    Memristors To Photomemristive Vision

    The concept extends beyond this electrical switching ability.

    A MoS2-based photomemristor, first reported in 2016, combines photodetection with non-volatile memory in a single structure. Under bias and illumination, the device records and reads resistance states, enabling optical signals to be detected and processed within the photodetector itself.

    Graphene/chalcogenide nanostructures, including MoS2/GO composites, exhibit broadband absorption and sensitivity across the UV-IR range. The review details how bandgap engineering in quantum dot systems allows spectral tuning from ultraviolet to near-infrared wavelengths.

    Panin distinguishes between near-sensor and in-sensor computing architectures: In near-sensor designs, such as h-BN/WSe2 optic-neural synaptic devices, sensing and synaptic elements are tightly integrated but remain functionally distinct.

    In contrast, two-terminal graphene/MoS2−xOx/graphene photomemristors perform sensing, memory, and computation directly within the same device.

    In these systems, reversible redox processes at graphene interfaces driven by oxygen vacancy migration enable multilevel photoresponse states at low bias.

    This mechanism allows fine-tuning of mem-photoconductivity without large changes in structural resistance, supporting analog-like behavior reminiscent of biological synapses.

    Emulating Neural Classification In The Sensor

    To demonstrate practical potential, the review describes a single-layer perceptron (SLP) implemented with photomemristor arrays. Using floating-point weights, the classifier achieved 97.66 % accuracy on MNIST digits (0-4).

    When discretized into seven photoresponse states, reflecting realistic device constraints, accuracy decreased only slightly to 96.44 %, a 1.22 % reduction.

    The result suggests that non-volatile photosensitivity matrices based on two-terminal photomemristors can support simultaneous perception and classification within the sensor itself, reducing data-transfer overhead.

    Autonomous Neuromorphic Vision

    Graphene-based memristive and photomemristive nanosensors combine structural simplicity with low-power operation and broadband optical responsiveness. Their surfaces lack dangling bonds, facilitating integration with CMOS technologies while minimizing interfacial defects.

    According to the review, electron- and laser-assisted fabrication techniques make it possible to form graphene oxide/graphene and bigraphene/diamane structures through scalable, localized processes involving controlled reduction and structural phase transitions.

    By exploiting both sp3-sp2 hybridization control and finely tunable redox-driven interfacial mechanisms, these devices could enable compact, energy-efficient neuromorphic vision systems that sense, store, and process information in a unified platform.

    Journal Reference

    Panin G. N. (2026). Graphene-Based Memristive and Photomemristive Nanosensors for Energy-Efficient Information Processing. Nanoenergy Advances 6(1):6. DOI: 10.3390/nanoenergyadv6010006



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Rethinking how quantum phases change – Physics World

    February 20, 2026

    Scientists confirm one-dimensional electron behavior in phosphorus chains

    February 18, 2026

    Nanomedicine as core enablers: Mechanisms of mitophagy and theranostic strategies in ischemia-reperfusion injury

    February 16, 2026

    Super-moiré spin textures revealed | Nature Nanotechnology

    February 15, 2026

    Issue 86

    February 14, 2026

    What shape is a uranium nucleus? – Physics World

    February 13, 2026
    Top Posts

    Hard-braking events as indicators of road segment crash risk

    January 14, 202618 Views

    Understanding U-Net Architecture in Deep Learning

    November 25, 202516 Views

    How to integrate a graph database into your RAG pipeline

    February 8, 202610 Views
    Don't Miss

    SETU leads €400,000 EU health tech education project

    February 20, 2026

    South East Technological University (SETU) is coordinating AM-Heal, a two-year, €400,000 Erasmus+ partnership designed to…

    Study: AI chatbots provide less-accurate information to vulnerable users | MIT News

    February 20, 2026

    Amazon EC2 Hpc8a Instances powered by 5th Gen AMD EPYC processors are now available

    February 20, 2026

    The Promptware Kill Chain – Schneier on Security

    February 20, 2026
    Stay In Touch
    • Facebook
    • Instagram
    About Us

    At GeekFence, we are a team of tech-enthusiasts, industry watchers and content creators who believe that technology isn’t just about gadgets—it’s about how innovation transforms our lives, work and society. We’ve come together to build a place where readers, thinkers and industry insiders can converge to explore what’s next in tech.

    Our Picks

    SETU leads €400,000 EU health tech education project

    February 20, 2026

    Study: AI chatbots provide less-accurate information to vulnerable users | MIT News

    February 20, 2026

    Subscribe to Updates

    Please enable JavaScript in your browser to complete this form.
    Loading
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms and Conditions
    © 2026 Geekfence.All Rigt Reserved.

    Type above and press Enter to search. Press Esc to cancel.